Asymptotic properties of subspace estimators

Since the proposal of subspace methods in the 1980s and early 1990s substantial efforts have been made in the analysis of the statistical properties of the algorithms. This paper surveys the literature on the asymptotic properties of particular subspace methods used for linear, dynamic, time invariant, discrete time systems. The goals of this paper are threefold: First this survey tries to present the most relevant results on the asymptotic properties of estimators obtained using subspace methods. Secondly the main methods and tools that have been used in the derivation of these results are presented to make the literature more accessible. Thirdly main unsolved questions and rewarding research topics are identified some of which can be attacked using the toolbox discussed in the paper.

[1]  Claudio De Persis,et al.  Proceedings of the 15th IFAC World Congress , 2002 .

[2]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[3]  Dietmar Bauer,et al.  Asymptotic Distributions of Subspace Estimates under Misspecification of the order , 1998 .

[4]  Tony Gustafsson Subspace Methods for System Identification and Signal Processing , 1999 .

[5]  W. Scherrer,et al.  LOCAL OPTIMALITY OF MINIMUM PHASE BALANCED TRUNCATION , 2002 .

[6]  W. Larimore System Identification, Reduced-Order Filtering and Modeling via Canonical Variate Analysis , 1983, 1983 American Control Conference.

[7]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[8]  Dietmar Bauer,et al.  Comparing the CCA Subspace Method to Pseudo Maximum Likelihood Methods in the case of No Exogenous Inputs , 2005 .

[9]  Bo Wahlberg,et al.  On Consistency of Subspace Methods for System Identification , 1998, Autom..

[10]  Michel Verhaegen,et al.  Application of a subspace model identification technique to identify LTI systems operating in closed-loop , 1993, Autom..

[11]  P. Holmes,et al.  Suppression of bursting , 1997, Autom..

[12]  L Nyström,et al.  Statistical Analysis , 2008, Encyclopedia of Social Network Analysis and Mining.

[13]  Jan M. Maciejowski,et al.  Realization of stable models with subspace methods , 1996, Autom..

[14]  M. Deistler,et al.  On the Impact of Weighting Matrices in Subspace Algorithms , 2000 .

[15]  Manfred Deistler,et al.  Statistical analysis of novel subspace identification methods , 1996, Signal Process..

[16]  Magnus Jansson On subspace methods in system identification and sensor array signal processing , 1997 .

[17]  M. Jansson Asymptotic Variance Analysis of Subspace Identification Methods , 2000 .

[18]  Michel Verhaegen,et al.  Closed-loop identification using canonical correlation analysis , 1999, 1999 European Control Conference (ECC).

[19]  D. Bauer Some asymptotic theory for the estimation of linear systems using maximum likelihood methods or subspace algorithms , 1998 .

[20]  Michel Verhaegen,et al.  Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..

[21]  Dietmar Bauer,et al.  Order estimation for subspace methods , 2001, Autom..

[22]  George Kapetanios,et al.  Testing the rank of the Hankel covariance matrix: a statistical approach , 2001, IEEE Trans. Autom. Control..

[23]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[24]  Manfred Deistler,et al.  Consistency and Relative Efficiency of Subspace Methods , 1994 .

[25]  Alessandro Chiuso Asymptotic variance of a certain closed-loop subspace identification method , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[26]  Alessandro Chiuso,et al.  On the ill-conditioning of subspace identification with inputs , 2004, Autom..

[27]  Dietmar Bauer,et al.  Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs , 1999, Autom..

[28]  Torben Knudsen Consistency analysis of subspace identification methods based on a linear regression approach , 2001, Autom..

[29]  Alessandro Chiuso Asymptotic variance of closed-loop subspace identification methods , 2006, IEEE Transactions on Automatic Control.

[30]  Lennart Ljung,et al.  Some facts about the choice of the weighting matrices in Larimore type of subspace algorithms , 2002, Autom..

[31]  Manfred Deistler,et al.  Consistency and relative efficiency of subspace methods , 1994, Autom..

[32]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[33]  W. Scherrer,et al.  The relation of the CCA subspace method to a balanced reduction of an autoregressive model , 2004 .

[34]  E. Hannan,et al.  The statistical theory of linear systems , 1989 .

[35]  Alessandro Chiuso,et al.  Subspace identification by data orthogonalization and model decoupling , 2003, Autom..

[36]  Bo Wahlberg,et al.  System identification (SYSID '03) : a proceedings volume from the 13th IFAC Symposium on System Identification, Rotterdam, the Netherlands, 27-29 August 2003 , 2004 .

[37]  Alessandro Chiuso,et al.  Numerical conditioning and asymptotic variance of subspace estimates , 2004, Autom..

[38]  Anders Lindquist,et al.  Experimental evidence showing that stochastic subspace identification methods may fail 1 1 This rese , 1998 .

[39]  A. Chiuso,et al.  The asymptotic variance of subspace estimates , 2004 .

[40]  Lennart Ljung,et al.  Closed-Loop Subspace Identification with Innovation Estimation , 2003 .

[41]  Alessandro Chiuso,et al.  Consistency analysis of closed-loop subspace identification , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[42]  H. Akaike Canonical Correlation Analysis of Time Series and the Use of an Information Criterion , 1976 .

[43]  Giorgio Picci,et al.  Stochastic realization with exogenous inputs and 'subspace-methods' identification , 1996, Signal Process..

[44]  L. Ljung,et al.  A least squares interpretation of sub-space methods for system identification , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[45]  M. Verhaegen Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm , 1992 .

[46]  Dietmar Bauer,et al.  Analysis of the asymptotic properties of the MOESP type of subspace algorithms , 2000, Autom..

[47]  Joakim Sorelius Subspace-based parameter estimation problems in signal processing , 1999 .

[48]  Bo Wahlberg,et al.  Estimation Of Autoregressive Moving‐Average Models Via High‐Order Autoregressive Approximations , 1989 .