Selecting for Function: Solution Synthesis of Magnetic Nanopropellers

We show that we can select magnetically steerable nanopropellers from a set of carbon coated aggregates of magnetic nanoparticles using weak homogeneous rotating magnetic fields. The carbon coating can be functionalized, enabling a wide range of applications. Despite their arbitrary shape, all nanostructures propel parallel to the vector of rotation of the magnetic field. We use a simple theoretical model to find experimental conditions to select nanopropellers which are predominantly smaller than previously published ones.

[1]  John G. Gibbs,et al.  Chiral Colloidal Molecules And Observation of The Propeller Effect , 2013, Journal of the American Chemical Society.

[2]  P. Fratzl,et al.  Nucleation and growth of magnetite from solution. , 2013, Nature materials.

[3]  J. Hopper,et al.  Magnetic nanocomposites for environmental remediation , 2013 .

[4]  Salvador Pané,et al.  Graphite Coating of Iron Nanowires for Nanorobotic Applications: Synthesis, Characterization and Magnetic Wireless Manipulation , 2013 .

[5]  Wei Gao,et al.  Nanomotor-based biocatalytic patterning of helical metal microstructures. , 2013, Nanoscale.

[6]  Shawn W. Walker,et al.  Optimization of chiral structures for microscale propulsion. , 2013, Nano letters.

[7]  Ambarish Ghosh,et al.  Dynamical configurations and bistability of helical nanostructures under external torque. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Robin J. White,et al.  Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage , 2012 .

[9]  Krzysztof K. Krawczyk,et al.  Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport , 2012, Advanced materials.

[10]  Joshua E S Socolar,et al.  Binary colloidal structures assembled through Ising interactions , 2012, Nature Communications.

[11]  Joseph Wang,et al.  High-speed propulsion of flexible nanowire motors: Theory and experiments , 2011, 1109.1631.

[12]  H. B. Land,et al.  Dipolar organization and magnetic actuation of flagella-like nanoparticle assemblies , 2011 .

[13]  P. Fischer,et al.  Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control. , 2011, Nanoscale.

[14]  D. Weihs,et al.  Magnetically powered flexible metal nanowire motors. , 2010, Journal of the American Chemical Society.

[15]  Li Zhang,et al.  Artificial bacterial flagella for micromanipulation. , 2010, Lab on a chip.

[16]  Sylvain Martel,et al.  Using a swarm of self-propelled natural microrobots in the form of flagellated bacteria to perform complex micro-assembly tasks , 2010, 2010 IEEE International Conference on Robotics and Automation.

[17]  Andrey L Rogach,et al.  Nonspherical Noble Metal Nanoparticles: Colloid‐Chemical Synthesis and Morphology Control , 2010, Advanced materials.

[18]  Zhongbo Zhang,et al.  Assembly of magnetic nanospheres into one-dimensional nanostructured carbon hybrid materials. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[19]  A. Alexander-Katz,et al.  Controlled surface-induced flows from the motion of self-assembled colloidal walkers , 2009, Proceedings of the National Academy of Sciences.

[20]  Christos Bergeles,et al.  Characterizing the swimming properties of artificial bacterial flagella. , 2009, Nano letters.

[21]  P. Fischer,et al.  Controlled propulsion of artificial magnetic nanostructured propellers. , 2009, Nano letters.

[22]  Metin Sitti,et al.  Miniature devices: Voyage of the microrobots , 2009, Nature.

[23]  Antoine Ferreira,et al.  Editorial: Special Issue on Current State of the Art and Future Challenges in Nanorobotics , 2009, Int. J. Robotics Res..

[24]  Vincent M. Rotello,et al.  Magnetic assembly of colloidal superstructures with multipole symmetry , 2009, Nature.

[25]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[26]  Jin-Song Hu,et al.  Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium‐Ion Batteries , 2008 .

[27]  Ignacio Pagonabarraga,et al.  Controlled swimming in confined fluids of magnetically actuated colloidal rotors. , 2008, Physical review letters.

[28]  E. Purcell Life at Low Reynolds Number , 2008 .

[29]  A. Muxworthy,et al.  Critical single-domain/multidomain grain sizes in noninteracting and interacting elongated magnetite particles: Implications for magnetosomes , 2006 .

[30]  M. Antonietti,et al.  Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. , 2006, Small.

[31]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[32]  Victor S-Y Lin,et al.  Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. , 2005, Angewandte Chemie.

[33]  Mostafa A. El-Sayed,et al.  Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution , 2004 .

[34]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[35]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[36]  Jan K. G. Dhont,et al.  An introduction to dynamics of colloids , 1996 .