Measuring structural complexity in brain images

An information theory based formalism for medical image analysis proposed in Young et al. [Young, K., Chen, Y., Kornak, J., Matson G. B., Schuff, N., 2005. Summarizing Complexity in High Dimensions, Phys. Rev. Lett. 94 098701-1] is described and used to estimate image complexity measures as a means of generating interpretable summary information. An analysis of anatomical brain MRI data exhibiting cortical thinning, currently considered to be a sensitive early biomarker for neurodegenerative diseases, is used to illustrate the method. Though requiring no previous assumptions about the detailed shape of the cortex or other brain structures, the method performed comparably (sensitivity=0.91) to direct cortical thickness estimation techniques (sensitivity=0.93) at separating populations in a data set designed specifically to test the cortical thickness estimation algorithms. The results illustrate that the complexity estimation method, though general, is capable of providing interpretable diagnostic information.

[1]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[2]  Alan C. Evans,et al.  Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. , 2006, Brain : a journal of neurology.

[3]  B. Ripley Statistical inference for spatial processes , 1990 .

[4]  Anders M. Dale,et al.  Differing neuropsychological and neuroanatomical correlates of abnormal reading in early-stage semantic dementia and dementia of the Alzheimer type , 2005, Neuropsychologia.

[5]  J.L. Marroquin,et al.  An accurate and efficient Bayesian method for automatic segmentation of brain MRI , 2002, IEEE Transactions on Medical Imaging.

[6]  Olivier D. Faugeras,et al.  Feature characterization in fMRI data: the Information Bottleneck approach , 2004, Medical Image Anal..

[7]  Frederik Barkhof,et al.  Pathological Aging of the Brain: An Overview , 2004, Topics in magnetic resonance imaging : TMRI.

[8]  Chiara Romualdi,et al.  Cortical atrophy is relevant in multiple sclerosis at clinical onset , 2007, Journal of Neurology.

[9]  A. Dale,et al.  Age‐Related Changes in Prefrontal White Matter Measured by Diffusion Tensor Imaging , 2005, Annals of the New York Academy of Sciences.

[10]  Alan C. Evans,et al.  Cortical thickness analysis examined through power analysis and a population simulation , 2005, NeuroImage.

[11]  Soon Beom Hong,et al.  Fractal dimension in human cortical surface: Multiple regression analysis with cortical thickness, sulcal depth, and folding area , 2006, Human brain mapping.

[12]  B. Rosen,et al.  Human Cerebellum: Surface-Assisted Cortical Parcellation and Volumetry with Magnetic Resonance Imaging , 2003, Journal of Cognitive Neuroscience.

[13]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[14]  Alan C. Evans,et al.  Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. , 2004, Cerebral cortex.

[15]  K. Worsley,et al.  Inference for magnitudes and delays of responses in the FIAC data using BRAINSTAT/FMRISTAT , 2006, Human brain mapping.

[16]  Michael I. Miller,et al.  A stochastic model for studying the laminar structure of cortex from MRI , 2005, IEEE Transactions on Medical Imaging.

[17]  Habib Zaidi,et al.  Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET , 2006, NeuroImage.

[18]  Nick C. Fox,et al.  MR image texture analysis applied to the diagnosis and tracking of Alzheimer's disease , 1998, IEEE Transactions on Medical Imaging.

[19]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[20]  Bruce Fischl,et al.  Changes in cerebral cortex of children treated for medulloblastoma. , 2007, International journal of radiation oncology, biology, physics.

[21]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[22]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[23]  Arthur W Toga,et al.  Cerebral Cortex Advance Access published October 20, 2006 Mapping Cortical Thickness in Children with 22q11.2 Deletions , 2022 .

[24]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.

[25]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[26]  G. Collewet,et al.  Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. , 2004, Magnetic resonance imaging.

[27]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[28]  B J Soher,et al.  Automated spectral analysis I: Formation of a priori information by spectral simulation , 1998, Magnetic resonance in medicine.

[29]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[30]  B L Miller,et al.  Patterns of brain atrophy in frontotemporal dementia and semantic dementia , 2002, Neurology.

[31]  Norbert Schuff,et al.  Summarizing complexity in high dimensions. , 2005, Physical review letters.

[32]  Guido Rossum,et al.  Python Reference Manual , 2000 .

[33]  James P. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[34]  Neil A. Thacker,et al.  Robust Tissue Boundary Detection for Cerebral Cortical Thickness Estimation , 2005, MICCAI.

[35]  Anders M. Dale,et al.  Sequence-independent segmentation of magnetic resonance images , 2004, NeuroImage.

[36]  N. Schuff,et al.  Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. , 2005, Radiology.

[37]  Max A. Viergever,et al.  f-information measures in medical image registration , 2004, IEEE Transactions on Medical Imaging.

[38]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[39]  J. Crutchfield,et al.  Structural information in two-dimensional patterns: entropy convergence and excess entropy. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[41]  David J. Hand,et al.  Classifier Technology and the Illusion of Progress , 2006, math/0606441.