α-Concave hull, a generalization of convex hull

Bounding hulls such as convex hull, -shape, -hull, concave hull, crust, etc. offer a wide variety of useful applications. In this paper, we explore another bounding hull, namely -concave hull, as a generalization of convex hull. The parameter determines the smoothness level of the constructed hull on a set of points. We show that it is NP-hard to compute -concave hull on a set of points for any 0<<. This leads us to a generalization of Fekete work (when =). We also introduce MACP as an NP-hard problem similar to the problem of computing -concave hull and present an approximation algorithm for MACP. The paper ends by implementing the proposed algorithm and comparing the experimental results against those of convex hull and -shape models.

[1]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[2]  P. Brucker On the Complexity of Clustering Problems , 1978 .

[3]  Godfried T. Toussaint,et al.  A historical note on convex hull finding algorithms , 1985, Pattern Recognit. Lett..

[4]  Harish Ganapathy,et al.  Alpha shape based design space decomposition for island failure regions in reliability based design , 2015 .

[5]  Tiande Guo,et al.  An Efficient Algorithm for Fingerprint Matching Based on Convex Hulls , 2009, 2009 International Conference on Computational Intelligence and Natural Computing.

[6]  Wolfgang M. Schmidt On a Problem of Heilbronn , 1972 .

[7]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[8]  Endre Szemerédi,et al.  On Heilbronn's Triangle Problem , 1981 .

[9]  Jyh-Ming Lien,et al.  Approximate convex decomposition and its applications , 2006 .

[10]  Kurt Mehlhorn,et al.  Curve reconstruction: connecting dots with good reason , 1999, SCG '99.

[11]  Arko Lucieer,et al.  Alpha-shapes for visualizing irregular-shaped class clusters in 3D feature space for classification of remotely sensed imagery , 2004, IS&T/SPIE Electronic Imaging.

[12]  Sang Won Bae,et al.  Covering points with convex sets of minimum size , 2018, Theor. Comput. Sci..

[13]  Gill Barequet,et al.  The On-Line Heilbronn's Triangle Problem in d Dimensions , 2007, Discret. Comput. Geom..

[14]  Zhang Li CONVEX HULL BASED POINT PATTERN MATCHING UNDER PERSPECTIVE TRANSFORMATION , 2002 .

[15]  K. F. Roth On a Problem of Heilbronn, III , 1972 .

[16]  Liu Jiyuan,et al.  Application of Convex Hull in Identifying the Types of Urban Land Expansion , 2003 .

[17]  Deok-Soo Kim,et al.  Protein structure optimization by side-chain positioning via beta-complex , 2013, J. Glob. Optim..

[18]  Zhenbing Zeng,et al.  Searching approximate global optimal Heilbronn configurations of nine points in the unit square via GPGPU computing , 2017, J. Glob. Optim..

[19]  Ghazali Sulong,et al.  Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images. , 2015, Magnetic resonance imaging.

[20]  Antony Galton,et al.  What Is the Region Occupied by a Set of Points? , 2006, GIScience.

[21]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[22]  Zhengwei Yang,et al.  Image registration and object recognition using affine invariants and convex hulls , 1999, IEEE Trans. Image Process..

[23]  S. Meeran,et al.  Optimum path planning using convex hull and local search heuristic algorithms , 1997 .

[24]  Peter Braß An Upper Bound for the d-Dimensional Analogue of Heilbronn's Triangle Problem , 2005, SIAM J. Discret. Math..

[25]  Imre Bárány,et al.  Applications of Graph and Hypergraph Theory in Geometry , 2007 .

[26]  Gill Barequet A lower bound for Hellbronn's triangle problem in d dimensions , 1999, SODA '99.

[27]  M. Ramanathan,et al.  Concave Hull of a Set of Freeform Closed Surfaces in R3 , 2012 .

[28]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[29]  Jeff Jones,et al.  Multi-agent Slime Mould Computing: Mechanisms, Applications and Advances , 2016 .

[30]  Gerlind Plonka-Hoch,et al.  Reconstruction of polygonal shapes from sparse Fourier samples , 2016, J. Comput. Appl. Math..

[31]  Kurt Mehlhorn,et al.  TSP-based curve reconstruction in polynomial time , 2000, SODA '00.

[32]  K. F. Roth On a Problem of Heilbronn , 1951 .

[33]  Yannis Avrithis,et al.  Α-shapes for Local Feature Detection , 2016, Pattern Recognit..

[34]  H. T. Mouftah,et al.  Localised alpha-shape computations for boundary recognition in sensor networks , 2009, Ad Hoc Networks.

[35]  Roddy MacLeod,et al.  Coarse Filters for Shape Matching , 2002, IEEE Computer Graphics and Applications.

[36]  Ray A. Jarvis,et al.  On the Identification of the Convex Hull of a Finite Set of Points in the Plane , 1973, Inf. Process. Lett..

[37]  Antony Galton,et al.  Efficient generation of simple polygons for characterizing the shape of a set of points in the plane , 2008, Pattern Recognit..

[38]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[39]  Se-Jong Oh,et al.  A New Concave Hull Algorithm and Concaveness Measure for n-dimensional Datasets , 2012, J. Inf. Sci. Eng..

[40]  David Eppstein,et al.  The Crust and the beta-Skeleton: Combinatorial Curve Reconstruction , 1998, Graph. Model. Image Process..

[41]  Kai Tang,et al.  Approximate Delaunay mesh reconstruction and quality estimation from point samples , 2015, J. Comput. Appl. Math..

[42]  Sándor P. Fekete,et al.  Area optimization of simple polygons , 1993, SCG '93.

[43]  E. Szemerédi,et al.  A Lower Bound for Heilbronn'S Problem , 1982 .

[44]  Hanno Lefmann On Heilbronn’s Problem in Higher Dimension , 2000, SODA '00.

[45]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[46]  Michael Kallay,et al.  The Complexity of Incremental Convex Hull Algorithms in Rd , 1984, Inf. Process. Lett..

[47]  Donald R. Chand,et al.  An Algorithm for Convex Polytopes , 1970, JACM.

[48]  Maribel Yasmina Santos,et al.  Concave hull: A k-nearest neighbours approach for the computation of the region occupied by a set of points , 2007, GRAPP.

[49]  William F. Eddy,et al.  A New Convex Hull Algorithm for Planar Sets , 1977, TOMS.

[50]  Hanif D. Sherali,et al.  A Global Optimization RLT-based Approach for Solving the Hard Clustering Problem , 2005, J. Glob. Optim..

[51]  Sándor P. Fekete,et al.  On Simple Polygonalizations with Optimal Area , 2000, Discret. Comput. Geom..

[52]  Tao Jiang,et al.  The expected size of Heilbronn's triangles , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[53]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[54]  Hiromasa Suzuki,et al.  Cover geometry design using multiple convex hulls , 2011, Comput. Aided Des..

[55]  Asdrúbal López Chau,et al.  Large data sets classification using convex–concave hull and support vector machine , 2012, Soft Computing.

[56]  David N. Siriba,et al.  Improvement of Volume Estimation of Stockpile of Earthworks Using a Concave Hull-Footprint , 2015 .

[57]  Hanno Lefmann Large triangles in the d-dimensional unit cube , 2006, Theor. Comput. Sci..

[58]  Herbert Edelsbrunner,et al.  Shape Reconstruction with Delaunay Complex , 1998, LATIN.

[59]  Hao Zhang,et al.  Convex hull covering of polygonal scenes for accurate collision detection in games , 2008, Graphics Interface.