Pathogenic autoantibodies in multiple sclerosis — from a simple idea to a complex concept

[1]  F. Leypoldt,et al.  IgG4 Autoantibodies in Organ-Specific Autoimmunopathies: Reviewing Class Switching, Antibody-Producing Cells, and Specific Immunotherapies , 2022, Frontiers in Immunology.

[2]  Mark S. Anderson,et al.  Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM , 2022, Nature.

[3]  T. Kanda,et al.  GRP78 Antibodies Are Associated With Blood-Brain Barrier Breakdown in Anti–Myelin Oligodendrocyte Glycoprotein Antibody–Associated Disorder , 2021, Neurology: Neuroimmunology & Neuroinflammation.

[4]  E. Tan,et al.  A case with Neurofascin-155 IgG antibody-associated combined central and peripheral demyelination: Successfully treated with anti-CD20 monoclonal antibody , 2021, Clinical Neurology and Neurosurgery.

[5]  G. Ricken,et al.  Neuropathological Variability within a Spectrum of NMDAR‐Encephalitis , 2021, Annals of neurology.

[6]  S. Weigand,et al.  Clinical Correlation of Multiple Sclerosis Immunopathologic Subtypes , 2021, Neurology.

[7]  J. Kira,et al.  Serum Anti-oligodendrocyte Autoantibodies in Patients With Multiple Sclerosis Detected by a Tissue-Based Immunofluorescence Assay , 2021, Frontiers in Neurology.

[8]  B. Erickson,et al.  Magnetic Resonance Imaging Correlates of Multiple Sclerosis Immunopathological Patterns , 2021, Annals of neurology.

[9]  John C. Silbereis,et al.  MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. , 2021, Brain : a journal of neurology.

[10]  H. Prüss Autoantibodies in neurological disease , 2021, Nature Reviews Immunology.

[11]  R. Hohlfeld,et al.  Features of MOG required for recognition by patients with MOG antibody-associated disorders. , 2021, Brain : a journal of neurology.

[12]  H. Lassmann,et al.  Potential Role of CHI3L1+ Astrocytes in Progression in MS , 2021, Neurology: Neuroimmunology & Neuroinflammation.

[13]  M. Reindl,et al.  Antibodies to MOG in CSF only: pathological findings support the diagnostic value , 2021, Acta Neuropathologica.

[14]  L. Querol,et al.  Optic Nerve Demyelination in IgG4 Anti–Neurofascin 155 Antibody–Positive Combined Central and Peripheral Demyelination Syndrome , 2021, Journal of central nervous system disease.

[15]  V. Tomassini,et al.  Defining the course of tumefactive multiple sclerosis: A large retrospective multicentre study , 2020, European journal of neurology.

[16]  H. Lassmann,et al.  Archeological neuroimmunology: resurrection of a pathogenic immune response from a historical case sheds light on human autoimmune encephalomyelitis and multiple sclerosis , 2020, Acta Neuropathologica.

[17]  F. Paul,et al.  Neuromyelitis optica , 2020, Nature Reviews Disease Primers.

[18]  J. D. Dunnen,et al.  IgG Immune Complexes Break Immune Tolerance of Human Microglia , 2020, The Journal of Immunology.

[19]  W. Robinson,et al.  Autoantibodies against central nervous system antigens in a subset of B cell–dominant multiple sclerosis patients , 2020, Proceedings of the National Academy of Sciences.

[20]  H. Weiner,et al.  Serum antibodies to phosphatidylcholine in MS , 2020, Neurology: Neuroimmunology & Neuroinflammation.

[21]  K. Fujihara,et al.  Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study. , 2020, Brain : a journal of neurology.

[22]  J. Dalmau,et al.  N‐Methyl‐D‐Aspartate Receptor Antibodies in Autoimmune Encephalopathy Alter Oligodendrocyte Function , 2020, Annals of Neurology.

[23]  C. Lucchinetti,et al.  The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody , 2020, Acta Neuropathologica.

[24]  T. Beißbarth,et al.  Antibody signatures in patients with histopathologically defined multiple sclerosis patterns , 2020, Acta Neuropathologica.

[25]  D. Reich,et al.  Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease , 2019, bioRxiv.

[26]  P. Nilsson,et al.  Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk , 2019, Proceedings of the National Academy of Sciences.

[27]  J. Vallat,et al.  Anti-Neurofascin-155 IgG4 antibodies prevent paranodal complex formation in vivo. , 2019, The Journal of clinical investigation.

[28]  K. Fujihara,et al.  Circulating AQP4-specific auto-antibodies alone can induce neuromyelitis optica spectrum disorder in the rat , 2018, Acta Neuropathologica.

[29]  M. Reindl,et al.  Myelin oligodendrocyte glycoprotein antibodies in neurological disease , 2018, Nature Reviews Neurology.

[30]  B. Weinshenker,et al.  Association of MOG-IgG Serostatus With Relapse After Acute Disseminated Encephalomyelitis and Proposed Diagnostic Criteria for MOG-IgG–Associated Disorders , 2018, JAMA neurology.

[31]  G. Ricken,et al.  Detection Methods for Autoantibodies in Suspected Autoimmune Encephalitis , 2018, Front. Neurol..

[32]  G. Krishnamoorthy,et al.  Pathogenicity of human antibodies against myelin oligodendrocyte glycoprotein , 2018, Annals of neurology.

[33]  Jacqueline Palace,et al.  MOG encephalomyelitis: international recommendations on diagnosis and antibody testing , 2018, Journal of Neuroinflammation.

[34]  F. Seil Myelin Antigens and Antimyelin Antibodies , 2018, Antibodies.

[35]  A. Lutterotti,et al.  NMDA receptor antibodies: A rare association in inflammatory demyelinating diseases , 2018 .

[36]  L. Boon,et al.  Neurofilament light as an immune target for pathogenic antibodies , 2017, Immunology.

[37]  Shantanu H. Joshi,et al.  Superficial white matter damage in anti-NMDA receptor encephalitis , 2017, Journal of Neurology, Neurosurgery, and Psychiatry.

[38]  H. Lassmann,et al.  Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination , 2017, Journal of Neuroinflammation.

[39]  Pattern II and pattern III MS are entities distinct from pattern I MS: evidence from cerebrospinal fluid analysis , 2017, Journal of Neuroinflammation.

[40]  T. Kanda,et al.  Glucose-regulated protein 78 autoantibody associates with blood-brain barrier disruption in neuromyelitis optica , 2017, Science Translational Medicine.

[41]  M. Martínez-Zapata,et al.  Absence of antibodies against KIR4.1 in multiple sclerosis: A three-technique approach and systematic review , 2017, PloS one.

[42]  J. Bennett,et al.  Myelin-specific multiple sclerosis antibodies cause complement-dependent oligodendrocyte loss and demyelination , 2017, Acta Neuropathologica Communications.

[43]  Neville E Sanjana,et al.  Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening , 2016, Nature Protocols.

[44]  B. Weinshenker,et al.  Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: Analysis of 102 patients , 2017, Annals of neurology.

[45]  Manoj Kumar,et al.  INGE GRUNDKE-IQBAL AWARD FOR ALZHEIMER’S RESEARCH: NEUROTOXIC REACTIVE ASTROCYTES ARE INDUCED BY ACTIVATED MICROGLIA , 2019, Alzheimer's & Dementia.

[46]  F. Baas,et al.  Complement C3 on microglial clusters in multiple sclerosis occur in chronic but not acute disease: Implication for disease pathogenesis , 2016, Glia.

[47]  H. Lassmann,et al.  Multiple sclerosis: experimental models and reality , 2016, Acta Neuropathologica.

[48]  B. Weinshenker,et al.  Atypical inflammatory demyelinating syndromes of the CNS , 2016, The Lancet Neurology.

[49]  K. Fujihara,et al.  Lack of KIR4.1 autoantibodies in Japanese patients with MS and NMO , 2016, Neurology: Neuroimmunology & Neuroinflammation.

[50]  T. Olsson,et al.  Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins , 2016, Proceedings of the National Academy of Sciences.

[51]  P. Trillenberg,et al.  Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica , 2016, Journal of Neurology, Neurosurgery & Psychiatry.

[52]  D. Hafler,et al.  Evaluation of KIR4.1 as an Immune Target in Multiple Sclerosis. , 2016, The New England journal of medicine.

[53]  L. Kappos,et al.  Multiple Sclerosis and Antibodies against KIR4.1. , 2016, The New England journal of medicine.

[54]  A. Venkatesan,et al.  A clinical approach to diagnosis of autoimmune encephalitis , 2016, The Lancet Neurology.

[55]  W. Brück,et al.  Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen , 2016, Acta Neuropathologica.

[56]  Michael Haberl,et al.  Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease , 2016, Proceedings of the National Academy of Sciences.

[57]  R. Hohlfeld,et al.  The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research , 2016, The Lancet Neurology.

[58]  N. Kokubun,et al.  Neurofascin-155 IgG4 in chronic inflammatory demyelinating polyneuropathy , 2016, Neurology.

[59]  F. Paul,et al.  Screening for MOG-IgG and 27 other anti-glial and anti-neuronal autoantibodies in ‘pattern II multiple sclerosis’ and brain biopsy findings in a MOG-IgG-positive case , 2016, Multiple sclerosis.

[60]  T. Beißbarth,et al.  Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis , 2016, Neurology: Neuroimmunology & Neuroinflammation.

[61]  H. Weiner,et al.  Serum lipid antibodies are associated with cerebral tissue damage in multiple sclerosis , 2016, Neurology: Neuroimmunology & Neuroinflammation.

[62]  B. Lang,et al.  Detection methods for neural autoantibodies. , 2016, Handbook of clinical neurology.

[63]  Ann M. Stowe,et al.  Peripheral VH4+ plasmablasts demonstrate autoreactive B cell expansion toward brain antigens in early multiple sclerosis patients , 2016, Acta Neuropathologica.

[64]  C. Kremser,et al.  Quantified CSF antibody reactivity against myelin in multiple sclerosis , 2015, Annals of clinical and translational neurology.

[65]  J. Bennett,et al.  Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid cause demyelination of spinal cord explants , 2015, Acta Neuropathologica.

[66]  S. Vukusic,et al.  Antibodies to aquaporin-1 are not present in neuromyelitis optica , 2015, Neurology: Neuroimmunology & Neuroinflammation.

[67]  M. Reindl,et al.  Antibody biomarkers in CNS demyelinating diseases – a long and winding road , 2015, European journal of neurology.

[68]  A. Traboulsee,et al.  International consensus diagnostic criteria for neuromyelitis optica spectrum disorders , 2015, Neurology.

[69]  A. Verkman,et al.  Mutagenesis of the Aquaporin 4 Extracellular Domains Defines Restricted Binding Patterns of Pathogenic Neuromyelitis Optica IgG , 2015, The Journal of Biological Chemistry.

[70]  D. Arnold,et al.  Epitope spreading as an early pathogenic event in pediatric multiple sclerosis , 2014, Neurology.

[71]  Y. Long,et al.  Development of a cell-based assay for the detection of anti-aquaporin 1 antibodies in neuromyelitis optica spectrum disorders , 2014, Journal of Neuroimmunology.

[72]  M. Romero,et al.  Investigation of the KIR4.1 potassium channel as a putative antigen in patients with multiple sclerosis: a comparative study , 2014, The Lancet Neurology.

[73]  C. Raoul,et al.  Lack of confirmation of anti-inward rectifying potassium channel 4.1 antibodies as reliable markers of multiple sclerosis , 2014, Multiple sclerosis.

[74]  B. Hemmer,et al.  To look for a needle in a haystack: the search for autoantibodies in multiple sclerosis , 2014, Multiple sclerosis.

[75]  Huidy Shu,et al.  Overlapping demyelinating syndromes and anti–N‐methyl‐D‐aspartate receptor encephalitis , 2014, Annals of neurology.

[76]  G. Giovannoni,et al.  Neurofilament light antibodies in serum reflect response to natalizumab treatment in multiple sclerosis , 2014, Multiple sclerosis.

[77]  Y. Itoyama,et al.  The Pathology of an Autoimmune Astrocytopathy: Lessons Learned from Neuromyelitis Optica , 2014, Brain pathology.

[78]  S. Tzartos,et al.  Anti-Aquaporin-1 Autoantibodies in Patients with Neuromyelitis Optica Spectrum Disorders , 2013, PloS one.

[79]  M. Levin,et al.  Autoantibodies to Non-myelin Antigens as Contributors to the Pathogenesis of Multiple Sclerosis. , 2013, Journal of clinical & cellular immunology.

[80]  A. Bar-Or,et al.  Serum autoantibodies to myelin peptides distinguish acute disseminated encephalomyelitis from relapsing– remitting multiple sclerosis , 2013, Multiple sclerosis.

[81]  H. Wolburg,et al.  Astrocytic autoantibody of neuromyelitis optica (NMO-IgG) binds to aquaporin-4 extracellular loops, monomers, tetramers and high order arrays. , 2013, Journal of autoimmunity.

[82]  Bernhard Hemmer,et al.  Potassium channel KIR4.1 as an immune target in multiple sclerosis. , 2012, The New England journal of medicine.

[83]  A. Bar-Or,et al.  Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro , 2012, Journal of Neuroimmunology.

[84]  T. Olsson,et al.  Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis , 2012, Brain : a journal of neurology.

[85]  I. Cohen,et al.  Antigen microarrays identify CNS-produced autoantibodies in RRMS , 2012, Neurology.

[86]  B. Scheithauer,et al.  Inflammatory cortical demyelination in early multiple sclerosis. , 2011, The New England journal of medicine.

[87]  J. Bennett,et al.  Lipid arrays identify myelin-derived lipids and lipid complexes as prominent targets for oligoclonal band antibodies in multiple sclerosis , 2011, Journal of Neuroimmunology.

[88]  A. Lutterotti,et al.  Patterns of Antibody Binding to Aquaporin-4 Isoforms in Neuromyelitis Optica , 2010, PloS one.

[89]  Xiaoyu Peng,et al.  Cellular and Synaptic Mechanisms of Anti-NMDA Receptor Encephalitis , 2010, The Journal of Neuroscience.

[90]  M. Papadopoulos,et al.  Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice. , 2010, Brain : a journal of neurology.

[91]  P. Brophy,et al.  Novel forms of neurofascin 155 in the central nervous system: alterations in paranodal disruption models and multiple sclerosis. , 2010, Brain : a journal of neurology.

[92]  V. Steen,et al.  Upregulation of Immunoglobulin‐related Genes in Cortical Sections from Multiple Sclerosis Patients , 2009, Brain pathology.

[93]  J. Parratt,et al.  Multiple sclerosis: Distribution of inflammatory cells in newly forming lesions , 2009, Annals of neurology.

[94]  B. Hemmer,et al.  Intrathecal pathogenic anti–aquaporin‐4 antibodies in early neuromyelitis optica , 2009, Annals of neurology.

[95]  Y. Itoyama,et al.  Neuromyelitis optica: Pathogenicity of patient immunoglobulin in vivo , 2009, Annals of neurology.

[96]  D. Hafler,et al.  Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid , 2009, Annals of neurology.

[97]  E. Cho,et al.  Immunoglobulins and complement in postmortem multiple sclerosis tissue , 2009, Annals of neurology.

[98]  Guillermo Izquierdo,et al.  Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis , 2008, Proceedings of the National Academy of Sciences.

[99]  A. Lutterotti,et al.  Cerebrospinal Fluid B Cells Correlate with Early Brain Inflammation in Multiple Sclerosis , 2008, PloS one.

[100]  W. Brück,et al.  Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis , 2008, Brain : a journal of neurology.

[101]  L. Bö,et al.  Homogeneity of active demyelinating lesions in established multiple sclerosis , 2008, Annals of neurology.

[102]  T. Olsson,et al.  Neurofascin as a novel target for autoantibody-mediated axonal injury , 2007, The Journal of experimental medicine.

[103]  D. Arnold,et al.  Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. , 2007, Archives of neurology.

[104]  Masami Tanaka,et al.  Anti-aquaporin 4 antibody in Japanese multiple sclerosis: the presence of optic–spinal multiple sclerosis without long spinal cord lesions and anti-aquaporin 4 antibody , 2007, Journal of Neurology, Neurosurgery & Psychiatry.

[105]  D. Hafler,et al.  Protective and therapeutic role for αB-crystallin in autoimmune demyelination , 2007, Nature.

[106]  Hans Lassmann,et al.  The Immunopathology of Multiple Sclerosis: An Overview , 2007, Brain pathology.

[107]  F. Paul,et al.  Antibody to Aquaporin 4 in the Diagnosis of Neuromyelitis Optica , 2007, PLoS medicine.

[108]  A. Bar-Or,et al.  Self-antigen tetramers discriminate between myelin autoantibodies to native or denatured protein , 2007, Nature Medicine.

[109]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[110]  M. Reindl,et al.  Antibodies as biological markers for pathophysiological processes in MS , 2006, Journal of Neuroimmunology.

[111]  Christine D. Dijkstra,et al.  Myelin flow cytometry assay detects enhanced levels of antibodies to human whole myelin in a subpopulation of multiple sclerosis patients , 2006, Journal of Neuroimmunology.

[112]  E. Frohman,et al.  Multiple sclerosis--the plaque and its pathogenesis. , 2006, The New England journal of medicine.

[113]  W. Robinson,et al.  Lipid microarrays identify key mediators of autoimmune brain inflammation , 2006, Nature Medicine.

[114]  D. Cottrell,et al.  Neurofascins Are Required to Establish Axonal Domains for Saltatory Conduction , 2005, Neuron.

[115]  A. Verkman,et al.  The Journal of Experimental Medicine CORRESPONDENCE , 2005 .

[116]  B. Weinshenker,et al.  Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange , 2005, The Lancet.

[117]  S. Hauser,et al.  Antibody responses against galactocerebroside are potential stage-specific biomarkers in multiple sclerosis. , 2005, The Journal of allergy and clinical immunology.

[118]  Gavin Giovannoni,et al.  Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement. , 2005, Archives of neurology.

[119]  Roland Martin,et al.  Immunology of multiple sclerosis. , 2005, Annual review of immunology.

[120]  L. Bö,et al.  The Pathology of Multiple Sclerosis Is Location-Dependent: No Significant Complement Activation Is Detected in Purely Cortical Lesions , 2005, Journal of neuropathology and experimental neurology.

[121]  Ichiro Nakashima,et al.  A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis , 2004, The Lancet.

[122]  Jacqueline A Palace,et al.  Serum autoantibodies to cell surface determinants in multiple sclerosis: a flow cytometric study. , 2004, Brain : a journal of neurology.

[123]  Lawrence Steinman,et al.  Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis , 2003, Nature Biotechnology.

[124]  Hans Lassmann,et al.  A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. , 2002, Brain : a journal of neurology.

[125]  P. Brown,et al.  Autoantigen microarrays for multiplex characterization of autoantibody responses , 2002, Nature Medicine.

[126]  W. Oertel,et al.  Patterns of cerebrospinal fluid pathology correlate with disease progression in multiple sclerosis. , 2001, Brain : a journal of neurology.

[127]  Hugo J. Bellen,et al.  Axon-Glia Interactions and the Domain Organization of Myelinated Axons Requires Neurexin IV/Caspr/Paranodin , 2001, Neuron.

[128]  Elior Peles,et al.  Contactin Orchestrates Assembly of the Septate-like Junctions at the Paranode in Myelinated Peripheral Nerve , 2001, Neuron.

[129]  J. Parisi,et al.  Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination , 2000, Annals of neurology.

[130]  H. Lassmann,et al.  Multiple sclerosis: In situ evidence for antibody‐ and complement‐mediated demyelination , 1998, Annals of neurology.

[131]  C. Bernard,et al.  Demyelinating Antibodies to Myelin Oligodendrocyte Glycoprotein and Galactocerebroside Induce Degradation of Myelin Basic Protein in Isolated Human Myelin , 1997, Journal of neurochemistry.

[132]  Moses Rodriguez,et al.  Distinct Patterns of Multiple Sclerosis Pathology Indicates Heterogeneity in Pathogenesis , 1996, Brain pathology.

[133]  H. Lassmann,et al.  Interferon‐γ potentiates antibody‐mediated demyelination in vivo , 1992 .

[134]  I. Kaitila,et al.  AN ANALYSIS OF 102 PATIENTS , 1992 .

[135]  H. Lassmann,et al.  The demyelinating potential of antibodies to myelin oligodendrocyte glycoprotein is related to their ability to fix complement , 1991, Journal of Neuroimmunology.

[136]  H. Lassmann,et al.  Antibody‐mediated demyelination in experimental allergic encephalomyelitis is independent of complement membrane attack complex formation , 1991, Clinical and experimental immunology.

[137]  Evon M. O. Abu-Taieh,et al.  Comparative Study , 2020, Definitions.

[138]  J. Broadhead,et al.  WHO consensus statement. , 1990, The British journal of psychiatry : the journal of mental science.

[139]  H. Lassmann,et al.  Differential Ultrastructural Localization of Myelin Basic Protein, Myelin/Oligodendroglial Glycoprotein, and 2′,3′‐Cyclic Nucleotide 3′‐Phosphodiesterase in the CNS of Adult Rats , 1989, Journal of neurochemistry.

[140]  H. Lassmann,et al.  Synergism in the Pathogenesis of EAE Induced by an MBP‐Specific T‐Cell Line and Monoclonal Antibodies to Galactocerebroside or a Myelin Oligodendroglial Glycoprotein a , 1988 .

[141]  H. Lassmann,et al.  Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. , 1988, The American journal of pathology.

[142]  M. Webb,et al.  A novel myelin-associated glycoprotein defined by a mouse monoclonal antibody , 1984, Journal of Neuroimmunology.

[143]  J. Prineas,et al.  Multiple sclerosis: Capping of surface immunoglobulin G on macrophages engaged in myelin breakdown , 1981, Annals of neurology.

[144]  F. Seil,et al.  Myelin-proteolipid protein does not induce demyelinating or myelination-inhibiting antibodies , 1980, Brain Research.

[145]  M. Buyse,et al.  Action of anti-cerebroside sera on myelinated nervous tissue cultures. , 1970, Pathologia Europaea.

[146]  S. Appel,et al.  TISSUE CULTURE STUDIES OF DEMYELINATION * , 1965, Annals of the New York Academy of Sciences.

[147]  S. Appel,et al.  THE APPLICATION OF TISSUE CULTURE TO THE STUDY OF EXPERIMENTAL ALLERGIC ENCEPHALOMYELITIS , 1964, The Journal of experimental medicine.