Synthesis and Properties of PVA/Carbon Nanotube Nanocomposites

This chapter is an overview of the synthesis and properties of PVA/nanotube composites. Various films and fibers have been processed from carbon nanotube and PVA dispersions. Compared to other polymers, PVA exhibits particularly strong interaction with single-walled as well as multiwalled carbon nanotubes. This leads to unique properties which are not oberved in other nanotube polymer nanocomposites. In particular, this literature review confirms that nanotubes can promote PVA crystallization in the vicinity of their interface. This yields imporvements of mechanical stress transfer. This effect can be enhanced with the surface functionalization of carbon nanotubes, in particular with hydroxyl or carboxyl groups, which display hudrogen bonds with PVA. Beyond the usual mechanical and electrical performances, this review also points out the emergence of other original properties, like the remarkable capabillity of some nanotube/PVA composites to absorb mechanical energy and shape memory phenomena that differ from traditional behaviors of other polymrers. These features are opening new investigation fields, in which several fundamental questions will have to be solved. But they also offer new opportunities for a variety of applications like smart or protective clothing, helmets, bullet proof vests, or active composites.

[1]  J. Luong,et al.  The effect of carbon nanotube aspect ratio and loading on the elastic modulus of electrospun poly(vinyl alcohol)-carbon nanotube hybrid fibers , 2009 .

[2]  M. Matsuo,et al.  Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold , 2009 .

[3]  M. Maugey,et al.  Raman Response of Carbon Nanotube/PVA Fibers under Strain , 2009 .

[4]  M. Maugey,et al.  Influence of surface functionalization on the thermal and electrical properties of nanotube-PVA composites , 2008 .

[5]  P. van der Schoot,et al.  Continuum percolation of carbon nanotubes in polymeric and colloidal media , 2008, Proceedings of the National Academy of Sciences.

[6]  M. Maugey,et al.  Shape and Temperature Memory of Nanocomposites with Broadened Glass Transition , 2007, Science.

[7]  M. Maugey,et al.  Thermo-electrical properties of PVA–nanotube composite fibers , 2007 .

[8]  Tong Lin,et al.  Effects of MWNT nanofillers on structures and properties of PVA electrospun nanofibres , 2007 .

[9]  J. Coleman,et al.  Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol) , 2007 .

[10]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[11]  Wei Chen,et al.  Electrically conductive yarns based on PVA/carbon nanotubes , 2007 .

[12]  Mark A. Miller,et al.  Depletion-induced percolation in networks of nanorods. , 2006, Physical review letters.

[13]  Satish Kumar,et al.  Single wall carbon nanotube templated oriented crystallization of poly(vinyl alcohol) , 2006 .

[14]  E. Kymakis,et al.  Electrical properties of single-wall carbon nanotube-polymer composite films , 2006 .

[15]  Masaru Matsuo,et al.  Morphology and mechanical and electrical properties of oriented PVA–VGCF and PVA–MWNT composites , 2006 .

[16]  Erhard Hornbogen,et al.  Comparison of Shape Memory Metals and Polymers , 2006 .

[17]  F. Wei,et al.  Elastic deformation of multiwalled carbon nanotubes in electrospun MWCNTs–PEO and MWCNTs–PVA nanofibers , 2005 .

[18]  M. Maugey,et al.  Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. , 2005, Nano letters.

[19]  M. Maugey,et al.  An Experimental Approach to the Percolation of Sticky Nanotubes , 2005, Science.

[20]  Yiping Liu,et al.  Thermomechanics of the shape memory effect in polymers for biomedical applications. , 2005, Journal of biomedical materials research. Part A.

[21]  H. Wagner,et al.  Mechanical Properties of Functionalized Single‐Walled Carbon‐Nanotube/Poly(vinyl alcohol) Nanocomposites , 2005 .

[22]  P. Poulin,et al.  Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes , 2004 .

[23]  Satish Kumar,et al.  Gel spinning of PVA/SWNT composite fiber , 2004 .

[24]  D. Resasco,et al.  Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes , 2004 .

[25]  Ya-Li Li,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2004, Science.

[26]  Werner J. Blau,et al.  Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area , 2004 .

[27]  D. Long,et al.  Gradient of glass transition temperature in filled elastomers , 2003 .

[28]  J. Kenny,et al.  Physical and mechanical behavior of single-walled carbon nanotube/polypropylene/ethylene-propylene-diene rubber nanocomposites , 2003 .

[29]  Robert H. Hauge,et al.  Poly(vinyl alcohol)/SWNT Composite Film , 2003 .

[30]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[31]  Sidney R. Cohen,et al.  Measurement of carbon nanotube-polymer interfacial strength , 2003 .

[32]  Robert H. Hauge,et al.  Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite , 2003 .

[33]  Satish Kumar,et al.  Effect of orientation on the modulus of SWNT films and fibers , 2003 .

[34]  M. Shaffer,et al.  Crystallization of Carbon Nanotube and Nanofiber Polypropylene Composites , 2003 .

[35]  J. Coleman,et al.  Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites , 2002 .

[36]  Shoushan Fan,et al.  Nanotechnology: Spinning continuous carbon nanotube yarns , 2002, Nature.

[37]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[38]  P. Poulin,et al.  Films and fibers of oriented single wall nanotubes , 2002 .

[39]  D. Resasco,et al.  Nucleation of Polypropylene Crystallization by Single-Walled Carbon Nanotubes , 2002 .

[40]  R. Langer,et al.  Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications , 2002, Science.

[41]  A. Lendlein,et al.  Shape-memory polymers , 2002 .

[42]  Myung Jong Kim,et al.  Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers , 2002, Science.

[43]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[44]  Andrew G. Rinzler,et al.  Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy , 2000 .

[45]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[46]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[47]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[48]  K. Méténier,et al.  Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes , 1999 .

[49]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[50]  Milo S. P. Shaffer,et al.  Dispersion and packing of carbon nanotubes , 1998 .

[51]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[52]  F. Carmona,et al.  Percolation in short fibres epoxy resin composites: Conductivity behavior and finite size effects near threshold , 1984 .

[53]  Isaac Balberg,et al.  Percolation thresholds in the three-dimensional sticks system , 1984 .

[54]  J. C. H. Affdl,et al.  The Halpin-Tsai Equations: A Review , 1976 .

[55]  H. L. Cox The elasticity and strength of paper and other fibrous materials , 1952 .

[56]  H. Staudinger,et al.  Hochmolekulare Verbindungen, 9. Mitteilung: Über Poly‐vinylacetat und Poly‐vinylalkohol , 1927 .

[57]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[58]  Mao Xu,et al.  Polyurethanes having shape memory effects , 1996 .