A new frontier for J-band interferometry: dual-band NIR interferometry with MIRC-X

In this contribution we report on our work to increase the spectral range of the Michigan Infrared Combiner- eXeter (MIRC-X) instrument at the CHARA array to allow for dual H and J band interferometric observations. We comment on the key science drivers behind this project and the methods of characterisation and correction of instrumental birefringence and dispersion. In addition, we report on the first results from on-sky commissioning in November 2019.

[1]  F. Millour,et al.  Optical interferometry and Gaia measurement uncertainties reveal the physics of asymptotic giant branch stars , 2020, 2006.07318.

[2]  Nikolai I. Shakura,et al.  Black Holes in Binary Systems: Observational Appearances , 1973 .

[3]  P. Ciddor Refractive index of air: new equations for the visible and near infrared. , 1996, Applied optics.

[4]  Martin J. Rees,et al.  Accretion Disc Models for Compact X-Ray Sources , 1972 .

[5]  J. E. Pringle,et al.  Accretion Discs in Astrophysics , 1981 .

[6]  John D. Monnier,et al.  MIRC-X polarinterferometry at CHARA , 2020, Astronomical Telescopes + Instrumentation.

[7]  John D. Monnier,et al.  The MIRC-X 6-telescope imager: key science drivers, instrument design and operation , 2018, Astronomical Telescopes + Instrumentation.

[8]  Rafael Millan-Gabet,et al.  The Michigan Infrared Combiner (MIRC): IR imaging with the CHARA Array , 2004, SPIE Astronomical Telescopes + Instrumentation.

[9]  Scott J. Kenyon,et al.  Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion , 1987 .

[10]  J. Monnier,et al.  Viscous Heating and Boundary Layer Accretion in the Disk of Outbursting Star FU Orionis , 2020, 2011.07865.

[11]  John D. Monnier,et al.  Contemporaneous Imaging Comparisons of the Spotted Giant σ Geminorum Using Interferometric, Spectroscopic, and Photometric Data , 2017, 1709.10109.

[12]  John D. Monnier,et al.  A triple-star system with a misaligned and warped circumstellar disk shaped by disk tearing , 2020, Science.

[13]  NOAO,et al.  RESOLVING VEGA AND THE INCLINATION CONTROVERSY WITH CHARA/MIRC , 2012, 1211.6055.

[14]  John D. Monnier,et al.  MIRC-X/CHARA: sensitivity improvements with an ultra-low noise SAPHIRA detector , 2018, Astronomical Telescopes + Instrumentation.

[15]  Theo A. ten Brummelaar,et al.  Preliminary results from the longitudinal dispersion compensation system for the CHARA array , 2003, SPIE Astronomical Telescopes + Instrumentation.

[16]  Peter G. Tuthill,et al.  Sensitive visible interferometry with PAVO , 2008, Astronomical Telescopes + Instrumentation.

[17]  Richard J. Mathar,et al.  Refractive index of humid air in the infrared: model fits , 2007 .

[18]  Rashid Sunyaev,et al.  Black holes in binary systems. Observational appearance , 1973 .

[19]  C. Dominik,et al.  UvA-DARE ( Digital Academic Repository ) Flaring vs . self-shadowed disks : The SEDs of Herbig Ae / Be stars , 2004 .

[20]  John D. Monnier,et al.  Irregular Dust Features around Intermediate-mass Young Stars with GPI: Signs of Youth or Misaligned Disks? , 2019 .

[21]  John D. Monnier,et al.  MIRC-X: A Highly Sensitive Six-telescope Interferometric Imager at the CHARA Array , 2020, The Astronomical Journal.