R/G/B/Natural White Light Thin Colloidal Quantum Dot‐Based Light‐Emitting Devices

Bright, low-voltage driven colloidal quantum dot (QD)-based white light-emitting devices (LEDs) with practicable device performances are enabled by the direct exciton formation within quantum-dot active layers in a hybrid device structure. Detailed device characterization reveals that white-QLEDs can be rationalized as a parallel circuit, in which different QDs are connected through the same set of electrically common organic and inorganic charge transport layers.

[1]  Rebecca J. Anthony,et al.  High-efficiency silicon nanocrystal light-emitting devices. , 2011, Nano letters.

[2]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[3]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[4]  V. Bulović,et al.  Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes. , 2013, Physical review letters.

[5]  Lee Soon Park,et al.  Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. , 2012, Journal of the American Chemical Society.

[6]  Liang Li,et al.  One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. , 2008, Journal of the American Chemical Society.

[7]  Kookheon Char,et al.  InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability , 2011 .

[8]  H. Butt,et al.  Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Light‐Emitting Diodes , 2009, Advanced materials.

[9]  Jian Xu,et al.  Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes. , 2011, Nano letters.

[10]  K. Char,et al.  Highly Efficient Green‐Light‐Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemical‐Composition Gradient , 2009 .

[11]  K. Char,et al.  Gram-Scale One-Pot Synthesis of Highly Luminescent Blue Emitting Cd1-xZnxS/ZnS Nanocrystals , 2008 .

[12]  K. Char,et al.  Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. , 2010, Nano letters.

[13]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[14]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[15]  V. Bulović,et al.  Selection of metal oxide charge transport layers for colloidal quantum dot LEDs. , 2009, ACS nano.

[16]  U. Kortshagen,et al.  Universal size-dependent trend in auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. , 2009, Physical review letters.

[17]  David Battaglia,et al.  Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. , 2007, Journal of the American Chemical Society.

[18]  J. Y. Han,et al.  High-performance crosslinked colloidal quantum-dot light-emitting diodes , 2009 .

[19]  V. Bulović,et al.  Bias-induced photoluminescence quenching of single colloidal quantum dots embedded in organic semiconductors. , 2007, Nano letters.

[20]  Kookheon Char,et al.  Single-Step Synthesis of Quantum Dots with Chemical Composition Gradients , 2008 .

[21]  Byungki Kim,et al.  White‐Light‐Emitting Diodes with Quantum Dot Color Converters for Display Backlights , 2010, Advanced materials.

[22]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[23]  V. Bulović,et al.  Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots , 2008 .

[24]  D. Y. Yoon,et al.  Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. , 2012, Nano letters.

[25]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[26]  K. Walzer,et al.  Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices , 2008 .

[27]  V. Bulović,et al.  Electroluminescence from single monolayers of nanocrystals in molecular organic devices , 2002, Nature.

[28]  John Silcox,et al.  Non-blinking semiconductor nanocrystals , 2009, Nature.

[29]  G. Gigli,et al.  Bright White‐Light‐Emitting Device from Ternary Nanocrystal Composites , 2006 .

[30]  R. H. Kim,et al.  High Performance AC Electroluminescence from Colloidal Quantum Dot Hybrids , 2012, Advanced materials.

[31]  P. Holloway,et al.  Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures , 2011 .

[32]  Kookheon Char,et al.  Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices. , 2009, ACS nano.

[33]  V. Bulović,et al.  Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. , 2007, Nano letters.

[34]  R. Janssen,et al.  Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers , 2008 .

[35]  J. Vela,et al.  "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. , 2008, Journal of the American Chemical Society.

[36]  V. Klimov Nanocrystal quantum dots, second edition , 2010 .

[37]  B. Dubertret,et al.  Towards non-blinking colloidal quantum dots. , 2008, Nature materials.

[38]  G. Gigli,et al.  White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer. , 2008, Small.

[39]  Jingkang Wang,et al.  Near‐Band‐Edge Electroluminescence from Heavy‐Metal‐Free Colloidal Quantum Dots , 2011, Advanced materials.