Pebble Weighted Automata and Weighted Logics

We introduce new classes of weighted automata on words. Equipped with pebbles, they go beyond the class of recognizable formal power series: they capture weighted first-order logic enriched with a quantitative version of transitive closure. In contrast to previous work, this calculus allows for unrestricted use of existential and universal quantifications over positions of the input word. We actually consider both two-way and one-way pebble weighted automata. The latter class constrains the head of the automaton to walk left-to-right, resetting it each time a pebble is dropped. Such automata have already been considered in the Boolean setting, in the context of data words. Our main result states that two-way pebble weighted automata, one-way pebble weighted automata, and our weighted logic are expressively equivalent. We also give new logical characterizations of standard recognizable series.

[1]  Joost Engelfriet,et al.  Tree-Walking Pebble Automata , 1999, Jewels are Forever.

[2]  CateBalder ten,et al.  Transitive closure logic, nested tree walking automata, and XPath , 2010 .

[3]  Ingmar Meinecke Weighted Logics for Traces , 2006, CSR.

[4]  Ina Mäurer Weighted picture automata and weighted logics , 2006 .

[5]  Christian Mathissen Weighted Logics for Nested Words and Algebraic Formal Power Series , 2008, ICALP.

[6]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[7]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[8]  Benedikt Bollig,et al.  Pebble Weighted Automata and Transitive Closure Logics , 2010, ICALP.

[9]  Ursula Dresdner,et al.  Computation Finite And Infinite Machines , 2016 .

[10]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[11]  Lauri Hella,et al.  Logics with aggregate operators , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[12]  Manfred Droste,et al.  Weighted Logics for Unranked Tree Automata , 2009, Theory of Computing Systems.

[13]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[14]  Leonid Libkin,et al.  Logics with counting and local properties , 2000, TOCL.

[15]  Antoine Meyer,et al.  Counting CTL , 2010, FoSSaCS.

[16]  Manfred Droste,et al.  Weighted tree automata and weighted logics , 2006, Theor. Comput. Sci..

[17]  E. Lander,et al.  Describing Graphs: A First-Order Approach to Graph Canonization , 1990 .

[18]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[19]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[20]  David Maier,et al.  Review of "Introduction to automata theory, languages and computation" by John E. Hopcroft and Jeffrey D. Ullman. Addison-Wesley 1979. , 1980, SIGA.

[21]  Paul Gastin,et al.  Adding Pebbles to Weighted Automata , 2012, CIAA.

[22]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[23]  Balder ten Cate,et al.  Transitive closure logic, nested tree walking automata, and XPath , 2010, J. ACM.

[24]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[25]  Mikolaj Bojanczyk,et al.  Tree-Walking Automata , 2008, LATA.

[26]  Kousha Etessami,et al.  Counting quantifiers, successor relations, and logarithmic space , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.

[27]  Benedikt Bollig,et al.  Weighted versus Probabilistic Logics , 2009, Developments in Language Theory.

[28]  Paul Gastin,et al.  Weighted automata and weighted logics , 2005, Theor. Comput. Sci..

[29]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[30]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[31]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[32]  Joost Engelfriet,et al.  Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure , 2007, Log. Methods Comput. Sci..

[33]  Lukasz Kaiser,et al.  Model Checking Games for the Quantitative mu-Calculus , 2008, STACS.

[34]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[35]  M. Blum,et al.  Automata on a 2-Dimensional Tape , 1967, SWAT.

[36]  Antoine Meyer,et al.  Counting LTL , 2010, 2010 17th International Symposium on Temporal Representation and Reasoning.

[37]  John C. Shepherdson,et al.  The Reduction of Two-Way Automata to One-Way Automata , 1959, IBM J. Res. Dev..

[38]  Thomas Schwentick,et al.  Expressive Power of Pebble Automata , 2006, ICALP.

[39]  Thomas Schwentick,et al.  Finite state machines for strings over infinite alphabets , 2004, TOCL.

[40]  Thomas Schwentick,et al.  On the power of tree-walking automata , 2000, Inf. Comput..

[41]  C. Reutenauer,et al.  Noncommutative Rational Series with Applications , 2010 .

[42]  Luc Segoufin,et al.  Complexity of Pebble Tree-Walking Automata , 2007, FCT.