Size-selected agglomerates of SnO 2 nanoparticles as gas sensors

Financial support was provided by ETH Zurich FEL-04 08-3, Finnish Academy, Tekes The Finnish National Technology Agency, and Nanoprim.

[1]  M. Sacks,et al.  Low‐Temperature Sintering of Aluminum Oxide , 1988 .

[2]  Nicolae Barsan,et al.  Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles , 2006 .

[3]  Sotiris E Pratsinis,et al.  Soft- and hard-agglomerate aerosols made at high temperatures. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[4]  Gregory Beaucage,et al.  Monitoring simultaneously the growth of nanoparticles and aggregates by in situ ultra-small-angle x-ray scattering , 2005 .

[5]  Pelagia-Irene Gouma,et al.  Sensing of Organic Vapors by Flame-Made TiO2 Nanoparticles , 2006 .

[6]  P. Barnes,et al.  Raised levels of exhaled carbon monoxide are associated with an increased expression of heme oxygenase-1 in airway macrophages in asthma: a new marker of oxidative stress , 1998, Thorax.

[7]  Masahiro Nishikawa,et al.  Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films , 1982 .

[8]  S. Friedlander,et al.  One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness , 2006 .

[9]  S. Friedlander,et al.  Inertial deposition of nanoparticle chain aggregates: Theory and comparison with impactor data for ultrafine atmospheric aerosols , 2006 .

[10]  Meilin Liu,et al.  A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition , 2005 .

[11]  G. L. Sharma,et al.  High ethanol sensitivity in sol–gel derived SnO2 thin films , 1999 .

[12]  G. Korotcenkov Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches , 2005 .

[13]  R. W. Cheary,et al.  Axial Divergence in a Conventional X-ray Powder Diffractometer. I. Theoretical Foundations , 1998 .

[14]  A. Berner,et al.  Mass size distributions of traffic aerosols at Vienna , 1980 .

[15]  Pelagia-Irene Gouma,et al.  Ferroelectric WO3 Nanoparticles for Acetone Selective Detection , 2008 .

[16]  Nicolae Barsan,et al.  Flame spray synthesis of tin dioxide nanoparticles for gas sensing , 2004 .

[17]  M. L. Laucks,et al.  Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles , 2000 .

[18]  Eduard Llobet,et al.  Influence of the doping method on the sensitivity of Pt-doped screen-printed SnO2 sensors , 2004 .

[19]  S. Pratsinis,et al.  Optimal Doping for Enhanced SnO2 Sensitivity and Thermal Stability , 2008 .

[20]  Sotiris E. Pratsinis,et al.  Polydispersity of primary particles in agglomerates made by coagulation and sintering , 2007 .

[21]  F. Kruis,et al.  Tailored nanoparticle films from monosized tin oxide nanocrystals: Particle synthesis, film formation, and size-dependent gas-sensing properties , 2003 .

[22]  Nicolae Barsan,et al.  Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles , 2006 .

[23]  John Drennan,et al.  Highly sensitive and fast responding CO sensor using SnO2 nanosheets , 2008 .

[24]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of smart nanostructured materials , 2007 .

[25]  Makoto Egashira,et al.  Basic Aspects and Challenges of Semiconductor Gas Sensors , 1999 .

[26]  Lutz Mädler,et al.  Nanoparticle synthesis at high production rates by flame spray pyrolysis , 2003 .

[27]  Andreas Hierlemann,et al.  Micropatterning Layers by Flame Aerosol Deposition‐Annealing , 2008 .

[28]  A.S. Haynes,et al.  Electrospun Conducting Polymer-Based Sensors for Advanced Pathogen Detection , 2008, IEEE Sensors Journal.

[29]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .

[30]  S. Pratsinis,et al.  Monitoring the flame synthesis of TiO2 particles by in-situ FTIR spectroscopy and thermophoretic sampling , 2001 .

[31]  Sotiris E Pratsinis,et al.  Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles , 2005, Nanotechnology.