Controllability and Observability of Partial Differential Equations: Some Results and Open Problems

Abstract In this chapter we present some of the recent progresses done on the problem of controllability of partial differential equations (PDE). Control problems for PDE arise in many different contexts and ways. A prototypical problem is that of controllability. Roughly speaking it consists in analyzing whether the solution of the PDE can be driven to a given final target by means of a control applied on the boundary or on a subdomain of the domain in which the equation evolves. In an appropriate functional setting this problem is equivalent to that of observability which concerns the possibility of recovering full estimates on the solutions of the uncontrolled adjoint system in terms of partial measurements done on the control region. Observability/controllability properties depend in a very sensitive way on the class of PDE under consideration. In particular, heat and wave equations behave in a significantly different way, because of their different behavior with respect to time reversal. In this paper we first recall the known basic controllability properties of the wave and heat equations emphasizing how their different nature affects their main controllability properties. We also recall the main tools to analyze these problems: the so-called Hilbert uniqueness method (HUM), multipliers, microlocal analysis and Carleman inequalities. We then discuss some more recent developments concerning equations with low regularity coefficients, equations with potentials, bang-bang controls, etc. We also analyze the way control and observability properties depend on the norm and regularity of these coefficients, a problem which is also relevant when addressing nonlinear models. We then present some recent results on coupled models of wave–heat equations arising in fluid–structure interaction. We also present some open problems and future directions of research.

[1]  Günter Leugering,et al.  Lp-Optimal Boundary Control for the Wave Equation , 2005, SIAM J. Control. Optim..

[2]  Enrique Zuazua,et al.  Discrete Ingham inequalities and applications , 2004 .

[3]  Anna Doubova,et al.  SOME CONTROL RESULTS FOR SIMPLIFIED ONE-DIMENSIONAL MODELS OF FLUID-SOLID INTERACTION , 2005 .

[4]  Exact boundary controllability for the wave equation in domains with small holes , 1992 .

[5]  The cost of controlling unstable systems: time irreversible systems , 1997 .

[6]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[7]  Luc Miller,et al.  On the Controllability of Anomalous Diffusions Generated by the Fractional Laplacian , 2006, Math. Control. Signals Syst..

[8]  V. Sverák,et al.  Backward Uniqueness for Parabolic Equations , 2003 .

[9]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[10]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[11]  Mark Asch,et al.  Geometrical aspects of exact boundary controllability for the wave equation - a numerical study , 1998 .

[12]  Enrique Zuazua,et al.  CONTROLLABILITY OF PARTIAL DIFFERENTIAL EQUATIONS AND ITS SEMI-DISCRETE APPROXIMATIONS , 2002 .

[13]  Olivier Glass,et al.  Exact boundary controllability of 3-D Euler equation , 2000 .

[14]  Andrei V. Fursikov,et al.  On exact boundary zero-controlability of two-dimensional Navier-Stokes equations , 1994 .

[15]  Enrique Zuazua,et al.  Decay Rates for the Three‐Dimensional Linear System of Thermoelasticity , 1999 .

[16]  P. Gérard,et al.  Condition ncessaire et suffisante pour la contrlabilit exacte des ondes , 1997 .

[17]  Olivier Bodart,et al.  Existence of Insensitizing Controls for a Semilinear Heat Equation with a Superlinear Nonlinearity , 2004 .

[18]  R. Triggiani,et al.  Control Theory for Partial Differential Equations: Continuous and Approximation Theories , 2000 .

[19]  J. Lions,et al.  Contrôlabilité exacte des approximations de Galerkin des équations de Navier-Stokes , 1997 .

[20]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[21]  David L. Russell,et al.  A Unified Boundary Controllability Theory for Hyperbolic and Parabolic Partial Differential Equations , 1973 .

[22]  Enrique Zuazua,et al.  Polynomial decay and control of a 1-d model for fluid-structure interaction , 2003 .

[23]  O Yu Emanuilov,et al.  Boundary controllability of parabolic equations , 1993 .

[24]  Luc Miller Controllability cost of conservative systems: resolvent condition and transmutation , 2004 .

[25]  E. Zuazua,et al.  Decay estimates for some semilinear damped hyperbolic problems , 1988 .

[26]  Sergei Avdonin,et al.  Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems , 1995 .

[27]  Jean-Pierre Puel,et al.  Approximate controllability of the semilinear heat equation , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[28]  Axel Osses,et al.  Local null controllability of a two-dimensional fluid-structure interaction problem , 2008 .

[29]  J. Lions Équations aux dérivées partielles et applications : articles dédiés à Jacques-Louis Lions , 1998 .

[30]  Enrique Zuazua,et al.  Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures (Mathématiques et Applications) , 2005 .

[31]  E. Fernández-Cara,et al.  Global Carleman estimates for solutions of parabolic systems defined by transposition and some applications to controllability , 2006 .

[32]  G. Lebeau,et al.  Mesures de défaut de compacité, application au système de Lamé , 2001 .

[33]  Stéphane Jaffard,et al.  Pointwise and spectral control of plate vibrations. , 1991 .

[34]  C. Fabre,et al.  Controls Insensitizing the Norm of the Solution of a Semilinear Heat-Equation , 1995 .

[35]  Enrique Zuazua,et al.  Controllability of the linear system of thermoelasticity , 1995 .

[36]  Goong Chen,et al.  Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications , 2001 .

[37]  Pengnian Chen,et al.  Controllability of linear systems in Banach spaces , 2002, Syst. Control. Lett..

[38]  Marius Tucsnak,et al.  A spectral approach for the exact observability of infinite dimensional systems with skew-adjoint generator. , 2005 .

[39]  Josephus Hulshof,et al.  Linear Partial Differential Equations , 1993 .

[40]  Enrique Zuazua,et al.  Polynomial decay and control of a 1−d hyperbolic–parabolic coupled system , 2004 .

[41]  Stabilité exponentielle des équations des ondes avec amortissement local de Kelvin–Voigt , 2004 .

[42]  C. Fabre,et al.  Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems , 1996 .

[43]  E. Zuazua,et al.  Null control of a 1− d model of mixed hyperbolic-parabolic type , 2002 .

[44]  E. Zuazua,et al.  Convergence of a multigrid method for the controllability of a 1-d wave equation , 2004 .

[45]  Günter Leugering,et al.  L∞-Norm minimal control of the wave equation: on the weakness of the bang-bang principle , 2008 .

[46]  Enrique Zuazua,et al.  On the lack of observability for wave equations: a Gaussian beam approach , 2002 .

[47]  Daniel Tataru,et al.  A priori estimates of Carleman's type in domains with boundary , 1994 .

[48]  Enrique Zuazua,et al.  On the lack of null-controllability of the heat equation on the half-line , 2000 .

[49]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[50]  Enrique Zuazua,et al.  Exact boundary controllability of Galerkin's approximations of Navier-Stokes equations , 1998 .

[51]  Enrique Zuazua,et al.  Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations , 2000 .

[52]  Enrique Zuazua,et al.  Null and approximate controllability for weakly blowing up semilinear heat equations , 2000 .

[53]  J. Klamka Controllability of dynamical systems , 1991, Mathematica Applicanda.

[54]  Sergio Guerrero,et al.  Local exact controllability of the Navier-Stokes system ✩ , 2004 .

[55]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[56]  Emmanuel Trélat,et al.  Global Steady-State Controllability of One-Dimensional Semilinear Heat Equations , 2004, SIAM J. Control. Optim..

[57]  E. Zuazua,et al.  Contrôlabilité approchée de l'équation de la chaleur linéaire avec des contrôles de norme L∞ minimale , 1993 .

[58]  Enrique Zuazua,et al.  On the Controllability of a Fractional Order Parabolic Equation , 2006, SIAM J. Control. Optim..

[59]  A. Fursikov Optimal Control of Distributed Systems: Theory and Applications , 2000 .

[60]  Sebastian Aniţa,et al.  Null Controllability for the Dissipative Semilinear Heat Equation , 2002 .

[61]  Muriel Boulakia Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid , 2003 .

[62]  Luz de Teresa,et al.  Insensitizing controls for a semilinear heat equation , 2000 .

[63]  Luc Miller,et al.  Escape Function Conditions for the Observation, Control, and Stabilization of the Wave Equation , 2002, SIAM J. Control. Optim..

[64]  Karine Beauchard,et al.  Local controllability of a 1-D Schrödinger equation , 2005 .

[65]  Giovanni Alessandrini,et al.  Null–controllability of One–dimensional Parabolic Equations , 2006 .

[66]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[67]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[68]  Enrique Zuazua,et al.  On the Controllability of Parabolic Systems with a Nonlinear Term Involving the State and the Gradient , 2002, SIAM J. Control. Optim..

[69]  Xu Zhang,et al.  Explicit observability estimate for the wave equation with potential and its application , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[70]  Tataru Daniel,et al.  Unique continuation for solutions to pde's; between hörmander's theorem and holmgren' theorem , 1995 .

[71]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[72]  Andrei V. Fursikov,et al.  Exact controllability of the Navier-Stokes and Boussinesq equations , 1999 .

[73]  Par S. Alinhac Non-unicite du probleme de Cauchy , 1983 .

[74]  C. Zuily,et al.  Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients , 1998 .

[75]  C. Kenig,et al.  Decay at infinity of caloric functions within characteristic hyperplanes , 2005, math/0509436.

[76]  Muriel Boulakia,et al.  Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid , 2005 .

[77]  Enrique Zuazua,et al.  The cost of approximate controllability for heat equations: the linear case , 2000, Advances in Differential Equations.

[78]  J. Ghidaglia Some backward uniqueness results , 1986 .

[79]  Vilmos Komornik,et al.  Fourier Series in Control Theory , 2005 .

[80]  E. Zuazua,et al.  A direct method for boundary stabilization of the wave equation , 1990 .

[81]  Enrique Zuazua,et al.  Control, observation and polynomial decay for a coupled heat-wave system , 2003 .

[82]  Enrique Zuazua,et al.  Exact Controllability and Stabilization of a Vibrating String with an Interior Point Mass , 1995 .

[83]  Doina Cioranescu,et al.  A Strange Term Coming from Nowhere , 1997 .

[84]  J. Lagnese Boundary Stabilization of Thin Plates , 1987 .

[85]  Enrique Fernández-Cara,et al.  Controls Insensitizing the Observation of a Quasi-geostrophic Ocean Model , 2005, SIAM J. Control. Optim..

[86]  Hector O. Fattorini,et al.  Infinite Dimensional Optimization and Control Theory: References , 1999 .

[87]  Luc Miller,et al.  On the null-controllability of the heat equation in unbounded domains , 2004, math/0404382.

[88]  David Ullrich,et al.  Divided differences and systems of nonharmonic Fourier series , 1980 .

[89]  Lop Fat Ho Observabilité frontière de l'équation des ondes , 1986 .

[90]  D. L. Russell,et al.  Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations , 1974 .

[91]  Yang Xiao-lin Approximate Controllability for a Parabolic Equation with Rapidly Oscillating Coefficients , 2009 .

[92]  Polynomial energy decay rate and strong stability of Kirchhoff plates with non-compact resolvent , 2005 .

[93]  K. G. Budden Wave Propagation , 1969, Nature.

[94]  Jean-Michel Coron,et al.  Global Exact Controllability of the 2D Navier-Stokes Equations on a Manifold without boundary , 1996 .

[95]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[96]  Oleg Yu. Imanuvilov,et al.  Controllability of Evolution equations , 1996 .

[97]  Enrique Zuazua,et al.  Problem 5.5 Exact controllability of the semi-linear wave equation , 2009 .

[98]  Enrique Zuazua,et al.  Exponential Decay for The Semilinear Wave Equation with Locally Distributed Damping , 1990 .

[99]  Enrique Zuazua,et al.  Boundary Controllability of a Linear Hybrid SystemArising in the Control of Noise , 1997 .

[100]  E. Zuazua,et al.  Approximate controllability of a semilinear heat equation in unbounded domains , 1999 .

[101]  Enrique Zuazua,et al.  An Introduction to the Controllability of Partial Differential Equations , 2004 .

[102]  E. Zuazua,et al.  Stabilization and control for the subcritical semilinear wave equation , 2003 .

[103]  V. Meshkov ON THE POSSIBLE RATE OF DECAY AT INFINITY OF SOLUTIONS OF SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS , 1992 .

[104]  E. Zuazua,et al.  Uniform stabilization of the wave equation by nonlinear boundary feedback , 1990 .

[105]  P. Grisvard Contrôlabilité exacte des solutions de l'équation des ondes en présence de singularités , 1989 .

[106]  Enrique Zuazua,et al.  Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods , 2005, SIAM Rev..

[107]  Lionel Rosier,et al.  CLASSICAL SOLUTIONS FOR THE EQUATIONS MODELLING THE MOTION OF A BALL IN A BIDIMENSIONAL INCOMPRESSIBLE PERFECT FLUID , 2005 .

[108]  Enrique Zuazua,et al.  On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials , 2008 .

[109]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[110]  Sergio Guerrero,et al.  Null Controllability of Some Systems of Two Parabolic Equations with One Control Force , 2007, SIAM J. Control. Optim..

[111]  Jeffrey Rauch,et al.  Exponential Decay of Solutions to Hyperbolic Equations in Bounded Domains , 1974 .

[112]  Jean-Michel Coron,et al.  Return method : some applications to flow control , 2000 .

[113]  G. Lebeau,et al.  Diffusion d’une onde par un coin , 1993 .

[114]  Oleg Yu. Imanuvilov,et al.  On Carleman estimates for hyperbolic equations , 2002 .

[115]  Enrique Zuazua,et al.  Some Problems and Results on the Controllability of Partial Differential Equations , 1998 .

[116]  F. John Partial differential equations , 1967 .

[117]  Enrique Zuazua,et al.  Concentration and Lack of Observability¶of Waves in Highly Heterogeneous Media , 2002 .

[118]  E. Zuazua Exponential decay for the semilinear wave equation with localized damping , 1990 .

[119]  Piermarco Cannarsa,et al.  Null controllability of degenerate heat equations , 2005, Advances in Differential Equations.

[120]  J. Coron,et al.  On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions , 1996 .

[121]  Oleg Yu. Imanuvilov,et al.  Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems , 2002 .

[122]  Weak asymptotic decay via a «relaxed invariance principle» for a wave equation with nonlinear, non-monotone damping , 1989 .

[123]  Jiongmin Yong,et al.  Optimal Control Theory for Infinite Dimensional Systems , 1994 .

[124]  M. Thoma,et al.  On Moment Theory and Controllability of One-Dimensional Vibrating Systems and Heating Processes , 1992 .

[125]  Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating coefficients , 1998 .

[126]  A. Ingham Some trigonometrical inequalities with applications to the theory of series , 1936 .

[127]  On the cost of controlling unstable systems: The case of boundary controls , 1997 .

[128]  J. Puel,et al.  NULL CONTROLLABILITY OF THE HEAT EQUATION WITH BOUNDARY FOURIER CONDITIONS: THE LINEAR CASE ∗ , 2006 .

[129]  Chi Y Lo Linear Partial Differential Equations , 2000 .

[130]  Karen K. Uhlenbeck Generic Properties of Eigenfunctions , 1976 .

[131]  M. Hillairet Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow , 2007 .

[132]  Kangsheng Liu Locally Distributed Control and Damping for the Conservative Systems , 1997 .

[133]  C. Hansen,et al.  Active vibration control of waves in simple structures with multiple error sensors , 1998 .

[134]  Carlos Castro,et al.  Low Frequency Asymptotic Analysis of a String with Rapidly Oscillating Density , 2000, SIAM J. Appl. Math..

[135]  Sigurd B. Angenent,et al.  The zero set of a solution of a parabolic equation. , 1988 .

[136]  Kangsheng Liu,et al.  Exponential Stability of an Abstract Nondissipative Linear System , 2001, SIAM J. Control. Optim..

[137]  Enrique Zuazua,et al.  Exact controllability for the semilinear wave equation , 1990 .

[138]  Peng-Fei Yao,et al.  On The Observability Inequalities for Exact Controllability of Wave Equations With Variable Coefficients , 1999 .

[139]  E. Zuazua,et al.  LACK OF COLLISION IN A SIMPLIFIED 1D MODEL FOR FLUID¿SOLID INTERACTION , 2006 .

[140]  Une nouvelle famille de multiplicateurs et applications à la contrôlabilité exacte de l'équation d'ondes , 1998 .

[141]  Enrique Zuazua,et al.  Null‐Controllability of a System of Linear Thermoelasticity , 1998 .

[142]  Sergio Guerrero,et al.  Global Carleman Inequalities for Parabolic Systems and Applications to Controllability , 2006, SIAM J. Control. Optim..

[143]  Kim Dang Phung,et al.  Observability and Control of Schrödinger Equations , 2001, SIAM J. Control. Optim..

[144]  Sergio Guerrero,et al.  Remarks on the null controllability of the Burgers equation , 2005 .

[145]  C. Bardos,et al.  Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .

[146]  E. Zuazua Finite dimensional null controllability for the semilinear heat equation , 1997 .

[147]  Jacques-Louis Lions,et al.  Nonlinear partial differential equations and their applications , 1998 .

[148]  Enrique Zuazua,et al.  Polynomial decay for a hyperbolic–parabolic coupled system , 2005 .

[149]  M. Tucsnak,et al.  Uniformly exponentially stable approximations for a class of second order evolution equations , 2007 .

[150]  Lionel Rosier,et al.  On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid , 2007 .

[151]  K. Miller Non-unique continuation for certain Ode's in Hilbert space and for uniformly parabolic and elliptic equations in self-adjoint divergence form , 1973 .

[152]  P. Gérard Microlocal defect measures , 1991 .

[153]  J. Ralston Solutions of the wave equation with localized energy , 1969 .

[154]  Y. Y. Belov,et al.  Inverse Problems for Partial Differential Equations , 2002 .

[155]  Luc Miller,et al.  On exponential observability estimates for the heat semigroup with explicit rates , 2006 .

[156]  Fredi Tröltzsch,et al.  Semidiscrete Ritz-Galerkin approximation of nonlinear parabolic boundary control problems—Strong convergence of optimal controls , 1994 .

[157]  Sebastian Anita,et al.  NULL CONTROLLABILITY OF NONLINEAR CONVECTIVE HEAT EQUATIONS , 2000 .

[158]  Daniel Coutand,et al.  The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations , 2006 .

[159]  A. Osses,et al.  Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients , 2002 .

[160]  Kangsheng Liu,et al.  Spectrum and Stability for Elastic Systems with Global or Local Kelvin-Voigt Damping , 1998, SIAM J. Appl. Math..

[161]  김정기,et al.  Propagation , 1994, Encyclopedia of Evolutionary Psychological Science.

[162]  D. L. Russell,et al.  Exact controllability theorems for linear parabolic equations in one space dimension , 1971 .

[163]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[164]  A. V. Fursikov,et al.  Optimal control of distributed systems , 1999 .

[165]  Luc Miller,et al.  Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time , 2003, math/0307158.

[166]  E. Zuazua,et al.  The rate at which energy decays in a string damped at one end , 1995 .

[167]  Xiaoyu Fu,et al.  A weighted identity for partial differential operators of second order and its applications , 2006 .

[168]  E. Zuazua,et al.  Null Controllability in Unbounded Domains for the Semilinear Heat Equation with Nonlinearities Involving Gradient Terms , 2001 .

[169]  Günter Leugering,et al.  Regularization of L∞-Optimal Control Problems for Distributed Parameter Systems , 2002, Comput. Optim. Appl..

[170]  V. Komornik Exact Controllability and Stabilization: The Multiplier Method , 1995 .

[171]  D. Russell Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .

[172]  Irena Lasiecka,et al.  Control of Nonlinear Distributed Parameter Systems , 2001 .

[173]  P. Zweifel Advanced Mathematical Methods for Scientists and Engineers , 1980 .

[174]  E. Zuazua,et al.  Decay Rates for Dissipative Wave equations , 1999 .

[175]  G. Lebeau Propagation des ondes dans les variétés à coins , 1997 .

[176]  Enrique Zuazua,et al.  Long-Time Behavior of a Coupled Heat-Wave System Arising in Fluid-Structure Interaction , 2007 .

[177]  A. Haraux,et al.  Systèmes dynamiques dissipatifs et applications , 1991 .

[178]  Thomas I. Seidman,et al.  The ‘window problem’ for series of complex exponentials , 2000 .

[179]  J. Lions Exact controllability, stabilization and perturbations for distributed systems , 1988 .

[180]  G. Lebeau Contrôle de l'équation de Schrödinger , 1992 .

[181]  Enrique Zuazua,et al.  ON THE DENSITY OF THE RANGE OF THE SEMIGROUP FOR SEMILINEAR HEAT EQUATIONS , 1995 .

[182]  Enrique Zuazua,et al.  Controllability of the linear system of thermoelastic plates , 1996, Advances in Differential Equations.

[183]  E. Zuazua,et al.  Global attractors for semilinear wave equations with locally distributed nonlinear damping and critical exponent , 1993 .

[184]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[185]  Jacques-Louis Lions,et al.  Remarks on approximate controllability , 1992 .

[186]  M. Tucsnak,et al.  Global Weak Solutions¶for the Two-Dimensional Motion¶of Several Rigid Bodies¶in an Incompressible Viscous Fluid , 2002 .

[187]  P. Martinez,et al.  NULL CONTROLLABILITY OF THE HEAT EQUATION IN UNBOUNDED DOMAINS BY A FINITE MEASURE CONTROL REGION , 2004 .

[188]  G. Leugering,et al.  Domain Decomposition Methods in Optimal Control of Partial Differential Equations , 2004 .

[189]  Jean-Michel Coron,et al.  Singular optimal control: A linear 1-D parabolic-hyperbolic example , 2005 .

[190]  Gilles Lebeau The wave equation with oscillating density: observability at low frequency , 1999 .

[191]  G. Lebeau Contrôle analytique I: esstimations a priori , 1992 .

[192]  Jerzy Zabczyk,et al.  Mathematical control theory - an introduction , 1992, Systems & Control: Foundations & Applications.

[193]  E. Zuazua,et al.  Uniform stabilization of the higher-dimensional system of thermoelasticity with a nonlinear boundary feedback , 2001 .

[194]  L. Robbiano,et al.  Fonction de coût et contrôle des solutions des équations hyperboliques , 1995 .

[195]  Kinji Watanabe Sur l'unicité rétrograde dans les problèmes mixtes paraboliques; Cas de dimension $1$ , 1990 .

[196]  G. Lebeau,et al.  Contróle Exact De Léquation De La Chaleur , 1995 .

[197]  M. G. Delgado,et al.  Optimal control and partial differential equations , 2004 .

[198]  Shanjian Tang,et al.  Carleman inequality for backward stochastic parabolic equations with general coefficients , 2004 .

[199]  Cathleen S. Morawetz,et al.  Notes on Time Decay and Scattering for Some Hyperbolic Problems , 1987 .

[200]  M. Zworski,et al.  Geometric control in the presence of a black box , 2004 .

[201]  J. Coron On the controllability of 2-D incompressible perfect fluids , 1996 .

[202]  Thomas Duyckaerts,et al.  Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface , 2007, Asymptot. Anal..

[203]  Dongho Chae,et al.  Exact controllability for semilinear parabolic equations with Neumann boundary conditions , 1996 .

[204]  N. Burq,et al.  Contrôle de l'équation des ondes dans des ouverts comportant des coins , 1998 .

[205]  A. Fursikov,et al.  Exact boundary zero controllability of three-dimensional Navier-Stokes equations , 1995 .

[206]  Luz de Teresa,et al.  Approximate Controllability of a Semilinear Heat Equation in $\Bbb R^N$ , 1998 .

[207]  Manuel González-Burgos,et al.  Controllability results for some nonlinear coupled parabolic systems by one control force , 2006, Asymptot. Anal..