Optimal structural design of a Biglide parallel drill grinder

This paper deals with the optimal structural design of a Biglide parallel grinder for drill grinding. A pair of spatial modules is adopted to replace the conventional parallelogram to enhance the out-of-plane stiffness of the latter. A multi-objective design optimization problem is formulated, of which the stiffness, motion/force transmission, and work space are taken into consideration. The Pareto front of the optimization problem is obtained to provide the optimum design of the Biglide machine, and a scatter matrix is visualized to reveal the influence of the link dimensions to the performance. The selected design from the Pareto front guarantees the requirement on the elastostatic performance in the grinding process with increased dexterous workspace size.

[1]  Damien Chablat,et al.  Multi-objective path placement optimization of parallel kinematics machines based on energy consumption, shaking forces and maximum actuator torques: Application to the Orthoglide , 2010 .

[2]  Joseph Edward Shigley,et al.  Standard Handbook of Machine Design , 2004 .

[3]  Sébastien Briot,et al.  Singularity-free design of the translational parallel manipulator IRSBot-2 , 2013 .

[4]  Damien Chablat,et al.  Comparison of Planar Parallel Manipulator Architectures based on a Multi-objective Design Optimization Approach , 2010, ArXiv.

[5]  Rodney G. Roberts Note on the normal form of a spatial stiffness matrix , 2001, IEEE Trans. Robotics Autom..

[6]  Jan A. Snyman,et al.  Methodologies for the optimal design of parallel manipulators , 2004 .

[7]  Frank Wardle,et al.  Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: integrated dynamic modelling, design optimisation and analysis , 2010 .

[8]  Bing Li,et al.  Analysis and simulation for a parallel drill point grinder , 2007 .

[9]  Damien Chablat,et al.  Kinematic Analysis of a New Parallel Machine Tool: the Orthoglide , 2007, ArXiv.

[10]  Xu Lei Yang,et al.  Study on Helical Drill Point Grinding with a Biglide Parallel Grinder , 2010 .

[11]  Hao Wang,et al.  Analysis and simulation for a parallel drill point grinder , 2006 .

[12]  Clément Gosselin,et al.  Stiffness mapping for parallel manipulators , 1990, IEEE Trans. Robotics Autom..

[13]  Ping Zou Kinematic analysis of a biglide parallel grinder , 2003 .

[14]  Yonas Tadesse,et al.  HBS-1: A Modular Child-Size 3D Printed Humanoid , 2016, Robotics.

[15]  Stéphane Caro,et al.  Identification of the manipulator stiffness model parameters in industrial environment , 2015 .

[16]  Jorge Angeles,et al.  On the Nature of the Cartesian Stiffness Matrix , 2010 .

[17]  Guanglei Wu,et al.  Mobile platform center shift in spherical parallel manipulators with flexible limbs , 2014 .

[18]  Kai Cheng,et al.  Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 1: holistic design approach, design considerations and specifications , 2010 .

[19]  J. Merlet Jacobian, Manipulability, Condition Number and Accuracy of Parallel Robots , 2005, ISRR.

[20]  Richard E. DeVor,et al.  Chisel edge and cutting lip shape optimization for improved twist drill point design , 2005 .

[21]  Jorge Angeles,et al.  Multiobjective Optimum Design of a Symmetric Parallel Schönflies-Motion Generator , 2009 .

[22]  Jürgen Hesselbach,et al.  Elastodynamic optimization of parallel kinematics , 2005, IEEE International Conference on Automation Science and Engineering, 2005..

[23]  Clément Gosselin,et al.  Parametric Stiffness Analysis of the Orthoglide , 2004, ArXiv.

[24]  D. C. Tao,et al.  Applied linkage synthesis , 1964 .

[25]  J. Merlet,et al.  Multi-criteria optimal design of parallel manipulators based on interval analysis , 2005 .

[26]  Dan Wang,et al.  Stiffness analysis of a hexaglide parallel loading mechanism , 2013 .

[27]  Stéphane Caro,et al.  Dynamic modeling and design optimization of a 3-DOF spherical parallel manipulator , 2014, Robotics Auton. Syst..

[28]  Damien Chablat,et al.  Stiffness Analysis of Overconstrained Parallel Manipulators , 2009, ArXiv.

[29]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[30]  K. Miller,et al.  Optimal kinematic design of spatial parallel manipulators: Application to Linear Delta robot , 2003 .

[31]  Imin Kao,et al.  Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers , 2000, Int. J. Robotics Res..

[32]  Lan Yan,et al.  A practical optimization design of helical geometry drill point and its grinding process , 2013 .

[33]  Gregory Walsh,et al.  Optimization of a three DOF translational platform for well-conditioned workspace , 1997, Proceedings of International Conference on Robotics and Automation.

[34]  Guanglei Wu,et al.  Stiffness analysis and comparison of a Biglide parallel grinder with alternative spatial modular parallelograms , 2016, Robotica.

[35]  Bijan Shirinzadeh,et al.  Enhanced stiffness modeling, identification and characterization for robot manipulators , 2005, IEEE Transactions on Robotics.

[36]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms , 1995 .

[37]  Tian Huang,et al.  Stiffness estimation of a tripod-based parallel kinematic machine , 2002, IEEE Trans. Robotics Autom..