Fast co‐evolution of anti‐silencing systems shapes the invasiveness of Mu‐like DNA transposons in eudicots

Transposable elements (TEs) constitute a major threat to genome stability and are therefore typically silenced by epigenetic mechanisms. In response, some TEs have evolved counteracting systems to suppress epigenetic silencing. In the model plant Arabidopsis thaliana, two such anti‐silencing systems have been identified and found to be mediated by the VANC DNA‐binding proteins encoded by VANDAL transposons. Here, we show that anti‐silencing systems have rapidly diversified since their origin in eudicots by gaining and losing VANC‐containing domains, such as DUF1985, DUF287, and Ulp1, as well as target sequence motifs. We further demonstrate that these motifs determine anti‐silencing specificity by sequence, density, and helical periodicity. Moreover, such rapid diversification yielded at least 10 distinct VANC‐induced anti‐silencing systems in Arabidopsis. Strikingly, anti‐silencing of non‐autonomous VANDALs, which can act as reservoirs of 24‐nt small RNAs, is critical to prevent the demise of cognate autonomous TEs and to ensure their propagation. Our findings illustrate how complex co‐evolutionary dynamics between TEs and host suppression pathways have shaped the emergence of new epigenetic control mechanisms.

[1]  D. Patel,et al.  Panoramix SUMOylation on chromatin connects the piRNA pathway to the cellular heterochromatin machinery , 2022, Nature Structural & Molecular Biology.

[2]  J. Hanna,et al.  SUMOylation of linker histone H1 drives chromatin condensation and restriction of embryonic cell fate identity. , 2021, Molecular cell.

[3]  R. Slotkin,et al.  An siRNA-guided ARGONAUTE protein directs RNA polymerase V to initiate DNA methylation , 2021, Nature Plants.

[4]  O. Loudet,et al.  Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana , 2021, Genome biology.

[5]  P. Lesage,et al.  A nuclear pore sub-complex restricts the propagation of Ty retrotransposons by limiting their transcription , 2021, bioRxiv.

[6]  Avanti Shrikumar,et al.  Base-resolution models of transcription factor binding reveal soft motif syntax , 2019, Nature Genetics.

[7]  A. Fujiyama,et al.  RNA interference-independent reprogramming of DNA methylation in Arabidopsis , 2020, Nature Plants.

[8]  R. Slotkin,et al.  Long-Read cDNA Sequencing Enables a "Gene-Like" Transcript Annotation of Transposable Elements. , 2020, The Plant cell.

[9]  M. Domínguez,et al.  The impact of transposable elements on tomato diversity , 2020, Nature Communications.

[10]  D. Lisch,et al.  Small RNA-Mediated De Novo Silencing of Ac/Ds Transposons Is Initiated by Alternative Transposition in Maize , 2020, Genetics.

[11]  D. Lisch,et al.  Silencing of Mutator Elements in Maize Involves Distinct Populations of Small RNAs and Distinct Patterns of DNA Methylation , 2020, Genetics.

[12]  Angela N. Brooks,et al.  Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns , 2018, Nature Communications.

[13]  A. Aravin,et al.  Su(var)2-10 and the SUMO Pathway Link piRNA-Guided Target Recognition to Chromatin Silencing. , 2019, Molecular cell.

[14]  M. Nordborg,et al.  Common alleles of CMT2 and NRPE1 are major determinants of CHH methylation variation in Arabidopsis thaliana , 2019, PLoS genetics.

[15]  C. Feschotte,et al.  Host–transposon interactions: conflict, cooperation, and cooption , 2019, Genes & development.

[16]  P. Wincker,et al.  Transposition favors the generation of large effect mutations that may facilitate rapid adaption , 2019, Nature Communications.

[17]  A. Hayward,et al.  Evolution of Mutator transposable elements across eukaryotic diversity , 2019, Mobile DNA.

[18]  A. Doron-Faigenboim,et al.  Redistribution of CHH Methylation and Small Interfering RNAs across the Genome of Tomato ddm1 Mutants , 2018, Plant Cell.

[19]  Yu Zhao,et al.  DDM1 Represses Noncoding RNA Expression and RNA-Directed DNA Methylation in Heterochromatin1 , 2018, Plant Physiology.

[20]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[21]  A. Fujiyama,et al.  Evolution of sequence-specific anti-silencing systems in Arabidopsis , 2017, Nature Communications.

[22]  O. Voinnet,et al.  A genome-wide transcriptome and translatome analysis of Arabidopsis transposons identifies a unique and conserved genome expression strategy for Ty1/Copia retroelements , 2017, Genome research.

[23]  R. Slotkin,et al.  Exogenous Transposable Elements Circumvent Identity-Based Silencing, Permitting the Dissection of Expression-Dependent Silencing[OPEN] , 2017, Plant Cell.

[24]  O. Voinnet,et al.  A genome-wide transcriptome and translatome analysis of Arabidopsis transposons identifies a unique and conserved genome expression strategy for Ty 1 / Copia retroelements , 2017 .

[25]  P. Capy,et al.  Experimental evolution reveals hyperparasitic interactions among transposable elements , 2016, Proceedings of the National Academy of Sciences.

[26]  G. Almouzni,et al.  The methyltransferase Suv39h1 links the SUMO pathway to HP1α marking at pericentric heterochromatin , 2016, Nature Communications.

[27]  D. Weigel,et al.  Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids , 2016, Proceedings of the National Academy of Sciences.

[28]  D. Lisch Mutator and MULE Transposons , 2015, Microbiology spectrum.

[29]  Nathan M. Springer,et al.  Genetic Perturbation of the Maize Methylome[W] , 2014, Plant Cell.

[30]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[31]  R. Martienssen,et al.  miRNAs trigger widespread epigenetically-activated siRNAs from transposons in Arabidopsis , 2014, Nature.

[32]  R. Jansen,et al.  Mapping the Epigenetic Basis of Complex Traits , 2014, Science.

[33]  A. Fujiyama,et al.  Mobilization of a plant transposon by expression of the transposon‐encoded anti‐silencing factor , 2013, The EMBO journal.

[34]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[35]  Francine E. Garrett-Bakelman,et al.  methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles , 2012, Genome Biology.

[36]  R. Jansen,et al.  Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation , 2012, Proceedings of the National Academy of Sciences.

[37]  J. Volff,et al.  Zisupton--a novel superfamily of DNA transposable elements recently active in fish. , 2012, Molecular biology and evolution.

[38]  Timothy L. Bailey,et al.  Gene expression Advance Access publication May 4, 2011 DREME: motif discovery in transcription factor ChIP-seq data , 2011 .

[39]  Felix Krueger,et al.  Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications , 2011, Bioinform..

[40]  I. Marín GIN transposons: genetic elements linking retrotransposons and genes. , 2010, Molecular biology and evolution.

[41]  T. Kakutani,et al.  Bursts of retrotransposition reproduced in Arabidopsis , 2009, Nature.

[42]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[43]  Frank Johannes,et al.  Assessing the Impact of Transgenerational Epigenetic Variation on Complex Traits , 2009, PLoS genetics.

[44]  T. Kakutani,et al.  Heritable epigenetic mutation of a transposon‐flanked Arabidopsis gene due to lack of the chromatin‐remodeling factor DDM1 , 2007, The EMBO journal.

[45]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[46]  A. Monfort,et al.  Mutator-like elements identified in melon, Arabidopsis and rice contain ULP1 protease domains , 2007, Molecular Genetics and Genomics.

[47]  M. Freeling,et al.  Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication , 2005, Nature Genetics.

[48]  Tetsuji Kakutani,et al.  Epigenetic Control of CACTA Transposon Mobility in Arabidopsis thaliana , 2004, Genetics.

[49]  Erica S. Johnson,et al.  Protein modification by SUMO. , 2004, Annual review of biochemistry.

[50]  Vladimir V. Kapitonov,et al.  Molecular paleontology of transposable elements from Arabidopsis thaliana , 2004, Genetica.

[51]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[52]  D. Lisch Mutator transposons. , 2002, Trends in plant science.

[53]  John H. Werren,et al.  The role of selfish genetic elements in eukaryotic evolution , 2001, Nature Reviews Genetics.

[54]  T. Kakutani,et al.  Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis , 2001, Nature.

[55]  R. Martienssen,et al.  Robertson's Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation (DDM1). , 2001, Genes & development.

[56]  S. Clough,et al.  Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[57]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[58]  N. Fedoroff,et al.  Epigenetic regulation of the maize Spm transposable element: Novel activation of a methylated promoter by TnpA , 1994, Cell.

[59]  N. Fedoroff,et al.  Epigenetic regulation of the maize Spm transposable element: novel activation of a methylated promoter by TnpA. , 1994, Cell.

[60]  H. Saedler,et al.  TnpA product encoded by the transposable element En‐1 of Zea mays is a DNA binding protein. , 1988, The EMBO journal.

[61]  D. Robertson Characterization of a mutator system in maize , 1978 .