An improved a posteriori error estimate for the Galerkin spectral method in one dimension

In Guo (2005) [9], the a posteriori error estimators for Galerkin spectral methods andp-version finite element methods in the one-dimensional case and their analysis as regards reliable and efficient properties were given. In this paper, some improved a posteriori error estimators are proposed which have simpler forms than the ones given in [9], and so can be easily calculated in practical applications. In particular, these a posteriori error estimates are independent of any information about solutions of Galerkin spectral methods or p-version finite element methods, and are determined solely by the known right-hand side term. It is proved that these a posteriori error estimators have the same reliability and efficiency as the ones in [9].

[1]  G. Burton Sobolev Spaces , 2013 .

[2]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[3]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[4]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[5]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[6]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[7]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[8]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[9]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[10]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[11]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[12]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[13]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[14]  ShenJie Efficient spectral-Galerkin method I , 1994 .

[15]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[16]  Christine Bernardi,et al.  Indicateurs d’erreur en $h-N$ version des éléments spectraux , 1996 .

[17]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..