An improved a posteriori error estimate for the Galerkin spectral method in one dimension
暂无分享,去创建一个
[1] G. Burton. Sobolev Spaces , 2013 .
[2] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[3] Barbara I. Wohlmuth,et al. On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..
[4] I. Babuska,et al. The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .
[5] I. Babuska,et al. Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .
[6] D. Gottlieb,et al. Numerical analysis of spectral methods , 1977 .
[7] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[8] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[9] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[10] I. Babuska,et al. Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .
[11] C. Canuto. Spectral methods in fluid dynamics , 1991 .
[12] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[13] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[14] ShenJie. Efficient spectral-Galerkin method I , 1994 .
[15] Ivo Babuška,et al. The optimal convergence rate of the p-version of the finite element method , 1987 .
[16] Christine Bernardi,et al. Indicateurs d’erreur en $h-N$ version des éléments spectraux , 1996 .
[17] Jie Shen,et al. Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..