Efficient Coding of Spatial Information in the Primate Retina

Sensory neurons have been hypothesized to efficiently encode signals from the natural environment subject to resource constraints. The predictions of this efficient coding hypothesis regarding the spatial filtering properties of the visual system have been found consistent with human perception, but they have not been compared directly with neural responses. Here, we analyze the information that retinal ganglion cells transmit to the brain about the spatial information in natural images subject to three resource constraints: the number of retinal ganglion cells, their total response variances, and their total synaptic strengths. We derive a model that optimizes the transmitted information and compare it directly with measurements of complete functional connectivity between cone photoreceptors and the four major types of ganglion cells in the primate retina, obtained at single-cell resolution. We find that the ganglion cell population exhibited 80% efficiency in transmitting spatial information relative to the model. Both the retina and the model exhibited high redundancy (∼30%) among ganglion cells of the same cell type. A novel and unique prediction of efficient coding, the relationships between projection patterns of individual cones to all ganglion cells, was consistent with the observed projection patterns in the retina. These results indicate a high level of efficiency with near-optimal redundancy in visual signaling by the retina.

[1]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[2]  D. H. Kelly Adaptation effects on spatio-temporal sine-wave thresholds. , 1972, Vision research.

[3]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[4]  S. Laughlin A Simple Coding Procedure Enhances a Neuron's Information Capacity , 1981, Zeitschrift fur Naturforschung. Section C, Biosciences.

[5]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  D. Baylor,et al.  Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.

[7]  Terrence J. Sejnowski,et al.  Network model of shape-from-shading: neural function arises from both receptive and projective fields , 1988, Nature.

[8]  Ralph Linsker,et al.  An Application of the Principle of Maximum Information Preservation to Linear Systems , 1988, NIPS.

[9]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[10]  D. Mastronarde Correlated firing of retinal ganglion cells , 1989, Trends in Neurosciences.

[11]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[12]  Li Zhaoping,et al.  Color coding and its interaction with spatiotemporal processing in the retina , 1990 .

[13]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[14]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[15]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[16]  J. V. van Hateren,et al.  Spatiotemporal contrast sensitivity of early vision , 1993, Vision Research.

[17]  R. Navarro,et al.  Modulation transfer of the human eye as a function of retinal eccentricity. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[18]  TJ Gawne,et al.  How independent are the messages carried by adjacent inferior temporal cortical neurons? , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Daniel L. Ruderman,et al.  Designing receptive fields for highest fidelity , 1994 .

[20]  D. Baylor,et al.  Concerted Signaling by Retinal Ganglion Cells , 1995, Science.

[21]  W. Bialek,et al.  Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  J. Atick,et al.  Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus , 1995 .

[23]  J. Nadal,et al.  Maximization of mutual information in a linear noisy network: a detailed study , 1995 .

[24]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[25]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[26]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[27]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[28]  D. Baylor,et al.  Mosaic arrangement of ganglion cell receptive fields in rabbit retina. , 1997, Journal of neurophysiology.

[29]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[31]  J. L. van Hemmen,et al.  Theory and implementation of infomax filters for the retina. , 1998, Network.

[32]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[33]  S. Laughlin Energy as a constraint on the coding and processing of sensory information , 2001, Current Opinion in Neurobiology.

[34]  Eero P. Simoncelli,et al.  Natural signal statistics and sensory gain control , 2001, Nature Neuroscience.

[35]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[36]  Christian K. Machens,et al.  Representation of Acoustic Communication Signals by Insect Auditory Receptor Neurons , 2001, The Journal of Neuroscience.

[37]  R. Masland The fundamental plan of the retina , 2001, Nature Neuroscience.

[38]  Michael J. Berry,et al.  A test of metabolically efficient coding in the retina , 2002, Network.

[39]  Dmitri B. Chklovskii,et al.  Wiring Optimization in Cortical Circuits , 2002, Neuron.

[40]  Michael J. Berry,et al.  Synergy, Redundancy, and Independence in Population Codes , 2003, The Journal of Neuroscience.

[41]  Terrence J. Sejnowski,et al.  Spatiochromatic Receptive Field Properties Derived from Information-Theoretic Analyses of Cone Mosaic Responses to Natural Scenes , 2003, Neural Computation.

[42]  Roland J. Baddeley,et al.  Synaptic energy efficiency in retinal processing , 2003, Vision Research.

[43]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[44]  J. H. Hateren,et al.  Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimental validation , 1992, Journal of Comparative Physiology A.

[45]  Robert G. Smith,et al.  Spike Generator Limits Efficiency of Information Transfer in a Retinal Ganglion Cell , 2004, The Journal of Neuroscience.

[46]  P. Sterling,et al.  Efficiency of Information Transmission by Retinal Ganglion Cells , 2004, Current Biology.

[47]  Michael J. Berry,et al.  Redundancy in the Population Code of the Retina , 2005, Neuron.

[48]  Snigdhansu Chatterjee,et al.  Procrustes Problems , 2005, Technometrics.

[49]  R. Baddeley,et al.  Is the early visual system optimised to be energy efficient? , 2005, Network.

[50]  P. Latham,et al.  Synergy, Redundancy, and Independence in Population Codes, Revisited , 2005, The Journal of Neuroscience.

[51]  Naftali Tishby,et al.  Efficient representation as a design principle for neural coding and computation , 2006, 2006 IEEE International Symposium on Information Theory.

[52]  Daniel J. Graham,et al.  Can the theory of “whitening” explain the center-surround properties of retinal ganglion cell receptive fields? , 2006, Vision Research.

[53]  Michael S. Lewicki,et al.  A Theory of Retinal Population Coding , 2006, NIPS.

[54]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[55]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[56]  Li Zhaoping,et al.  Theoretical understanding of the early visual processes by data compression and data selection , 2006, Network.

[57]  Jonathon Shlens,et al.  The Structure of Multi-Neuron Firing Patterns in Primate Retina , 2006, The Journal of Neuroscience.

[58]  Gal Chechik,et al.  Reduction of Information Redundancy in the Ascending Auditory Pathway , 2006, Neuron.

[59]  Michael S. Lewicki,et al.  Efficient auditory coding , 2006, Nature.

[60]  Charles P. Ratliff,et al.  Design of a Neuronal Array , 2008, The Journal of Neuroscience.

[61]  T. Sharpee,et al.  Predictable irregularities in retinal receptive fields , 2009, Proceedings of the National Academy of Sciences.

[62]  Vijay Balasubramanian,et al.  Receptive fields and functional architecture in the retina , 2009, The Journal of physiology.

[63]  Jonathon Shlens,et al.  Receptive Fields in Primate Retina Are Coordinated to Sample Visual Space More Uniformly , 2009, PLoS biology.

[64]  Gasper Tkacik,et al.  Optimal population coding by noisy spiking neurons , 2010, Proceedings of the National Academy of Sciences.

[65]  Charles P. Ratliff,et al.  Retina is structured to process an excess of darkness in natural scenes , 2010, Proceedings of the National Academy of Sciences.

[66]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[67]  Simoncelli Eero Diversity of efficient coding solutions for a population of noisy linear neurons , 2010 .

[68]  E.J. Chichilnisky,et al.  Cone photoreceptor contributions to noise and correlations in the retinal output , 2011, Nature Neuroscience.

[69]  Kamiar Rahnama Rad,et al.  Information Rates and Optimal Decoding in Large Neural Populations , 2011, NIPS.

[70]  Eero P. Simoncelli,et al.  Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons , 2011, NIPS.

[71]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[72]  M. Meister,et al.  Decorrelation and efficient coding by retinal ganglion cells , 2012, Nature Neuroscience.