Self-organizing maps for learning the edit costs in graph matching

Although graph matching and graph edit distance computation have become areas of intensive research recently, the automatic inference of the cost of edit operations has remained an open problem. In the present paper, we address the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps (SOMs) that represent the distance measuring spaces of node and edge labels. Our learning process is based on the concept of self-organization. It adapts the edit costs in such a way that the similarity of graphs from the same class is increased, whereas the similarity of graphs from different classes decreases. The learning procedure is demonstrated on two different applications involving line drawing graphs and graphs representing diatoms, respectively.

[1]  Kuo-Chin Fan,et al.  Genetic-based search for error-correcting graph isomorphism , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[2]  Peter N. Yianilos,et al.  Learning String-Edit Distance , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Edwin R. Hancock,et al.  Inexact Graph Matching with Genetic Search , 1996, SSPR.

[4]  Eric Horvitz From the Guest Editor...: Special Issue on Graph-Based Representations , 2005, Decis. Anal..

[5]  Miro Kraetzl,et al.  Graph distances using graph union , 2001, Pattern Recognit. Lett..

[6]  Horst Bunke,et al.  Self-Organizing Graph Graph Edit Distance , 2003, GbRPR.

[7]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[8]  L. Hubert,et al.  Quadratic assignment as a general data analysis strategy. , 1976 .

[9]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Edwin R. Hancock,et al.  Structural Matching by Discrete Relaxation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Gabriel Valiente,et al.  A graph distance metric combining maximum common subgraph and minimum common supergraph , 2001, Pattern Recognit. Lett..

[12]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[13]  Terry Caelli,et al.  Inexact Multisubgraph Matching Using Graph Eigenspace and Clustering Models , 2002, SSPR/SPR.

[14]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Michael J. Fischer,et al.  The String-to-String Correction Problem , 1974, JACM.

[16]  Horst Bunke,et al.  Self-organizing map for clustering in the graph domain , 2002, Pattern Recognit. Lett..

[17]  Marcello Pelillo,et al.  Matching Free Trees, Maximal Cliques, and Monotone Game Dynamics , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  J. J. McGregor,et al.  Backtrack search algorithms and the maximal common subgraph problem , 1982, Softw. Pract. Exp..

[19]  Edwin R. Hancock,et al.  Structural Graph Matching Using the EM Algorithm and Singular Value Decomposition , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[21]  Edwin R. Hancock,et al.  Bayesian graph edit distance , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[22]  Edwin R. Hancock,et al.  Inexact graph matching using genetic search , 1997, Pattern Recognit..

[23]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[24]  Horst Bunke,et al.  Graph Edit Distance with Node Splitting and Merging, and Its Application to Diatom Idenfication , 2003, GbRPR.

[25]  L. A. Goodman,et al.  Measures of association for cross classifications , 1979 .

[26]  Horst Bunke,et al.  Error Correcting Graph Matching: On the Influence of the Underlying Cost Function , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Marc Parizeau,et al.  Optimizing the cost matrix for approximate string matching using genetic algorithms , 1998, Pattern Recognit..

[28]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[29]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  C. Mallows,et al.  A Method for Comparing Two Hierarchical Clusterings , 1983 .

[31]  H. D. Buf,et al.  Automatic diatom identification , 2002 .

[32]  David G. Stork,et al.  Pattern Classification , 1973 .

[33]  Horst Bunke,et al.  A New Algorithm for Error-Tolerant Subgraph Isomorphism Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Edwin R. Hancock,et al.  Spectral Feature Vectors for Graph Clustering , 2002, SSPR/SPR.

[35]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[36]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .