Learning to Diffuse: A New Perspective to Design PDEs for Visual Analysis

Partial differential equations (PDEs) have been used to formulate image processing for several decades. Generally, a PDE system consists of two components: the governing equation and the boundary condition. In most previous work, both of them are generally designed by people using mathematical skills. However, in real world visual analysis tasks, such predefined and fixed-form PDEs may not be able to describe the complex structure of the visual data. More importantly, it is hard to incorporate the labeling information and the discriminative distribution priors into these PDEs. To address above issues, we propose a new PDE framework, named learning to diffuse (LTD), to adaptively design the governing equation and the boundary condition of a diffusion PDE system for various vision tasks on different types of visual data. To our best knowledge, the problems considered in this paper (i.e., saliency detection and object tracking) have never been addressed by PDE models before. Experimental results on various challenging benchmark databases show the superiority of LTD against existing state-of-the-art methods for all the tested visual analysis tasks.

[1]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[2]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[3]  Ying Wu,et al.  A unified approach to salient object detection via low rank matrix recovery , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[6]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Lihi Zelnik-Manor,et al.  Context-aware saliency detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[10]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Peng Jiang,et al.  Salient Region Detection by UFO: Uniqueness, Focusness and Objectness , 2013, 2013 IEEE International Conference on Computer Vision.

[12]  Joost van de Weijer,et al.  Boosting color saliency in image feature detection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[14]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Jian Sun,et al.  Geodesic Saliency Using Background Priors , 2012, ECCV.

[16]  Zhixun Su,et al.  Learning PDEs for Image Restoration via Optimal Control , 2010, ECCV.

[17]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[18]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[19]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Shiguang Shan,et al.  Adaptive Partial Differential Equation Learning for Visual Saliency Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[22]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[23]  Lu Zhang,et al.  Preserving Structure in Model-Free Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Huchuan Lu,et al.  Superpixel tracking , 2011, 2011 International Conference on Computer Vision.

[25]  Serge J. Belongie,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[27]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[28]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[29]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[30]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[31]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[32]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[33]  Shai Avidan,et al.  Locally Orderless Tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[36]  Sabine Süsstrunk,et al.  Salient Region Detection and Segmentation , 2008, ICVS.

[37]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[38]  Bin Shen,et al.  Online robust image alignment via iterative convex optimization , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Chunming Li,et al.  Distance Regularized Level Set Evolution and Its Application to Image Segmentation , 2010, IEEE Transactions on Image Processing.

[41]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[42]  Stanley Osher,et al.  Deblurring and Denoising of Images by Nonlocal Functionals , 2005, Multiscale Model. Simul..

[43]  Xavier Bresson,et al.  Fast Global Minimization of the Active Contour/Snake Model , 2007, Journal of Mathematical Imaging and Vision.

[44]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[45]  Andreas Krause,et al.  Submodular Function Maximization , 2014, Tractability.

[46]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  Nanning Zheng,et al.  Automatic salient object segmentation based on context and shape prior , 2011, BMVC.

[48]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[49]  Frédéric Cao,et al.  Geometric curve evolution and image processing , 2003, Lecture notes in mathematics.

[50]  Peyman Milanfar,et al.  Static and space-time visual saliency detection by self-resemblance. , 2009, Journal of vision.

[51]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[52]  Jian Sun,et al.  Poisson matting , 2004, ACM Trans. Graph..

[53]  Li Xu,et al.  Hierarchical Saliency Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Shih-Fu Chang,et al.  Submodular video hashing: a unified framework towards video pooling and indexing , 2012, ACM Multimedia.

[55]  James H. Elder,et al.  Design and perceptual validation of performance measures for salient object segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[56]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[57]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[58]  Takeo Kanade,et al.  Distributed cosegmentation via submodular optimization on anisotropic diffusion , 2011, 2011 International Conference on Computer Vision.

[59]  Shang-Hong Lai,et al.  Fusing generic objectness and visual saliency for salient object detection , 2011, 2011 International Conference on Computer Vision.

[60]  Pushmeet Kohli,et al.  Tractability: Practical Approaches to Hard Problems , 2013 .

[61]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[62]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[63]  Zhixun Su,et al.  Toward designing intelligent PDEs for computer vision: An optimal control approach , 2011, Image Vis. Comput..

[64]  Huchuan Lu,et al.  Bayesian Saliency via Low and mid Level Cues , 2022 .

[65]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[66]  Mubarak Shah,et al.  Visual attention detection in video sequences using spatiotemporal cues , 2006, MM '06.

[67]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[68]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[69]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[70]  Larry S. Davis,et al.  Submodular Salient Region Detection , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[71]  Huchuan Lu,et al.  Salient object detection via bootstrap learning , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[72]  Nanning Zheng,et al.  Learning to Detect a Salient Object , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[73]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[74]  Ariel Shamir,et al.  Improved seam carving for video retargeting , 2008, ACM Trans. Graph..

[75]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[76]  Otmar Scherzer,et al.  Variational Methods in Imaging , 2008, Applied mathematical sciences.

[77]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).