Prototype extraction in material attractor neural networks with stochastic dynamic learning

Dynamic learning of random stimuli can be described as a random walk among the stable synaptic values. It is shown that prototype extraction can take place in material attractor neural networks when the stimuli are correlated and hierarchically organized. The network learns a set of attractors representing the prototypes in a completely unsupervised fashion and is able to modify its attractors when the input statistics change. Learning and forgetting rates are computed.