Parametric modelling of growth curve data: An overview

In the past two decades a parametric multivariate regression modelling approach for analyzing growth curve data has achieved prominence. The approach, which has several advantages over classical analysis-of-variance and general multivariate approaches, consists of postulating, fitting, evaluating, and comparing parametric models for the data's mean structure and covariance structure. This article provides an overview of the approach, using unified terminology and notation. Well-established models and some developed more recently are described, with emphasis given to those models that allow for nonstationarity and for measurement times that differ across subjects and are unequally spaced. Graphical diagnostics that can assist with model postulation and evaluation are discussed, as are more formal methods for fitting and comparing models. Three examples serve to illustrate the methodology and to reveal the relative strengths and weaknesses of the various parametric models.

[1]  F. E. Satterthwaite Synthesis of variance , 1941 .

[2]  Franklin A. Graybill,et al.  Theory and Application of the Linear Model , 1976 .

[3]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[4]  Harvey Goldstein,et al.  The Design And Analysis Of Longitudinal Studies , 1979 .

[5]  C. A. McGilchrist,et al.  Stochastic Growth Curve Analysis , 1979 .

[6]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[7]  C. Berkey Bayesian approach for a nonlinear growth model. , 1982, Biometrics.

[8]  J. Berger,et al.  Empirical Bayes Estimation of Rates in Longitudinal Studies , 1983 .

[9]  Inference about Multivariate Means for a Nonstationary Autoregressive Model , 1983 .

[10]  H. Weisberg,et al.  Empirical Bayes estimation of individual growth-curve parameters and their relationship to covariates. , 1983, Biometrics.

[11]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[12]  H. Müller,et al.  Nonparametric Regression Analysis of Growth Curves , 1984 .

[13]  Anne Lohrli Chapman and Hall , 1985 .

[14]  Peter Green Linear models for field trials, smoothing and cross-validation , 1985 .

[15]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[16]  J. Hart,et al.  Kernel Regression Estimation Using Repeated Measurements Data , 1986 .

[17]  R. Jennrich,et al.  Unbalanced repeated-measures models with structured covariance matrices. , 1986, Biometrics.

[18]  E. A. Sylvestre,et al.  Principal modes of variation for processes with continuous sample curves , 1986 .

[19]  T. Gasser,et al.  Variable latencies of noisy signals: Estimation and testing in brain potential data , 1987 .

[20]  H. Goldstein Multilevel Statistical Models , 2006 .

[21]  Michael G. Kenward,et al.  A Method for Comparing Profiles of Repeated Measurements , 1987 .

[22]  Standard errors resilient to error variance misspecification , 1988 .

[23]  Francis Kuk,et al.  Evaluation of five different cochlear implant designs: Audiologic assessment and predictors of performance , 1988, The Laryngoscope.

[24]  H. Müller Nonparametric regression analysis of longitudinal data , 1988 .

[25]  P. Diggle An approach to the analysis of repeated measurements. , 1988, Biometrics.

[26]  M. Hutchinson,et al.  ON SPLINE SMOOTHING WITH AUTOCORRELATED ERRORS , 1989 .

[27]  Y. Ritov Estimating a signal with noisy nuisance parameters , 1989 .

[28]  David J. Hand,et al.  Analysis of Repeated Measures , 1990 .

[29]  Naomi Altman,et al.  Kernel Smoothing of Data with Correlated Errors , 1990 .

[30]  R. H. Jones Serial correlation of random subject effects , 1990 .

[31]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[32]  James Stephen Marron,et al.  Semiparametric Comparison of Regression Curves , 1990 .

[33]  J. Ramsay,et al.  Some Tools for Functional Data Analysis , 1991 .

[34]  G. Robinson That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .

[35]  Alexander Shapiro,et al.  Variogram fitting with a general class of conditionally nonnegative definite functions , 1991 .

[36]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[37]  T. Gasser,et al.  Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .

[38]  Sastry G. Pantula,et al.  Nonlinear Regression with Variance Components , 1992 .

[39]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[40]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[41]  T. Hastie,et al.  [A Statistical View of Some Chemometrics Regression Tools]: Discussion , 1993 .

[42]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[43]  J. Lindsey Models for Repeated Measurements , 1993 .

[44]  Nicholas I. Fisher,et al.  On the Nonparametric Estimation of Covariance Functions , 1994 .

[45]  D. Hedeker,et al.  A random-effects ordinal regression model for multilevel analysis. , 1994, Biometrics.

[46]  Philippe Vieu,et al.  Growth curves: a two-stage nonparametric approach , 1994 .

[47]  Peter J. Diggle,et al.  RATES OF CONVERGENCE IN SEMI‐PARAMETRIC MODELLING OF LONGITUDINAL DATA , 1994 .

[48]  V. Núñez-Antón,et al.  Analysis of longitudinal data with unequally spaced observations and time-dependent correlated errors. , 1994, Biometrics.

[49]  Peter Hall,et al.  Properties of nonparametric estimators of autocovariance for stationary random fields , 1994 .

[50]  R. Fraiman,et al.  Smoothing dependent observations , 1994 .

[51]  P. Diggle,et al.  Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. , 1994, Biometrics.

[52]  S. Arnold,et al.  Variable order ante-dependence models , 1994 .

[53]  J M Taylor,et al.  Inference for smooth curves in longitudinal data with application to an AIDS clinical trial. , 1995, Statistics in medicine.

[54]  N. Altman,et al.  Nonparametric Empirical Bayes Growth Curve Analysis , 1995 .

[55]  Bernard W. Silverman,et al.  Incorporating parametric effects into functional principal components analysis , 1995 .

[56]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[57]  Yanqin Fan,et al.  Consistent model specification tests : Omitted variables and semiparametric functional forms , 1996 .

[58]  D. Hedeker,et al.  MIXOR: a computer program for mixed-effects ordinal regression analysis. , 1996, Computer methods and programs in biomedicine.

[59]  L. Skovgaard NONLINEAR MODELS FOR REPEATED MEASUREMENT DATA. , 1996 .

[60]  Timothy G. Gregoire,et al.  A non-linear mixed-effects model to predict cumulative bole volume of standing trees , 1996 .

[61]  D. Hand,et al.  Practical Longitudinal Data Analysis , 1996 .

[62]  J. Hart,et al.  Smoothing-based lack-of-fit tests: variations on a theme , 1996 .

[63]  J. Zheng,et al.  A consistent test of functional form via nonparametric estimation techniques , 1996 .

[64]  R. Wolfinger Heterogeneous Variance-Covariance Structures for Repeated Measures , 1996 .

[65]  E. Vonesh,et al.  Linear and Nonlinear Models for the Analysis of Repeated Measurements , 1996 .

[66]  Vicente Núñez-Antón Longitudinal data analysis: non‐stationary error structures and antedependent models , 1997 .

[67]  Timothy G. Gregoire,et al.  Modelling Longitudinal and Spatially Correlated Data , 1997 .

[68]  M. Kenward,et al.  Small sample inference for fixed effects from restricted maximum likelihood. , 1997, Biometrics.

[69]  V. Núñez-Antón,et al.  Kernel regression estimates of growth curves using nonstationary correlated errors , 1997 .

[70]  Philippe Besse,et al.  Simultaneous non-parametric regressions of unbalanced longitudinal data , 1997 .

[71]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[72]  T. Gasser,et al.  Alignment of curves by dynamic time warping , 1997 .

[73]  Dale L. Zimmerman,et al.  Structured Antedependence Models for Longitudinal Data , 1997 .

[74]  Geert Molenberghs,et al.  Linear Mixed Models in Practice: A SAS-Oriented Approach , 1997 .

[75]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[76]  E Lesaffre,et al.  Local influence in linear mixed models. , 1998, Biometrics.

[77]  M Cortina-Borja Review of Linear and Non-linear Models for the Analysis of Repeated Measurements , by E.F. Vonesh and V.M. Chinchilli , 1998 .

[78]  Wenceslao González Manteiga,et al.  Significance testing in nonparametric regression based on the bootstrap , 2001 .

[79]  E Lesaffre,et al.  The detection of residual serial correlation in linear mixed models. , 1998, Statistics in medicine.

[80]  P J Diggle,et al.  Nonparametric estimation of covariance structure in longitudinal data. , 1998, Biometrics.

[81]  D. Zimmerman,et al.  Computational aspects of likelihood-based estimation of first-order antedependence models , 1998 .

[82]  Joan G. Staniswalis,et al.  Nonparametric Regression Analysis of Longitudinal Data , 1998 .

[83]  Steven G. Gilmour,et al.  The analysis of designed experiments and longitudinal data by using smoothing splines - Discussion , 1999 .

[84]  M. Pourahmadi Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation , 1999 .

[85]  M. Kenward,et al.  The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines , 1999 .

[86]  Vicente Núñez-Antón,et al.  Longitudinal data with nonstationary errors: a nonparametric three-stage approach , 1999 .

[87]  J. Hidalgo Nonparametric tests for model selection with time series data , 1999 .

[88]  Viewing the Correlation Structure of Longitudinal Data through a PRISM , 2000 .

[89]  D. Zimmerman,et al.  Modeling Nonstationary Longitudinal Data , 2000, Biometrics.

[90]  Anthony C. Davison,et al.  The Partial Scatterplot Matrix , 2000 .

[91]  Helen Brown,et al.  Applied Mixed Models in Medicine , 2000, Technometrics.

[92]  Modelización de datos longitudinales con estructuras de covarianza no estacionarias: modelos de coeficientes aleatorios frente a modelos alternativos , 2001 .

[93]  Mohsen Pourahmadi,et al.  Foundations of Time Series Analysis and Prediction Theory , 2001 .

[94]  F. J. Pierce,et al.  Contemporary Statistical Models for the Plant and Soil Sciences , 2001 .

[95]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .