Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture
暂无分享,去创建一个
Glaucio H. Paulino | Rodrigo Espinha | Waldemar Celes | Kyoungsoo Park | G. Paulino | Kyoungsoo Park | W. Celes | Rodrigo Espinha
[1] Ted Belytschko,et al. Cracking node method for dynamic fracture with finite elements , 2009 .
[2] J. Trangenstein. Multi-scale iterative techniques and adaptive mesh refinement for flow in porous media , 2002 .
[3] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[4] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[5] Joseph E. Bishop,et al. Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations , 2009 .
[6] O. C. Zienkiewicz,et al. The Finite Element Method: Its Basis and Fundamentals , 2005 .
[7] Alain Combescure,et al. Automatic energy conserving space–time refinement for linear dynamic structural problems , 2005 .
[8] L. B. Freund,et al. Fracture Initiation Due to Asymmetric Impact Loading of an Edge Cracked Plate , 1990 .
[9] F. Erdogan,et al. On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .
[10] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[11] Glaucio H. Paulino,et al. Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials , 2005 .
[12] Nils-Erik Wiberg,et al. Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .
[13] Luiz Velho. Mesh simplification using four-face clusters , 2001, Proceedings International Conference on Shape Modeling and Applications.
[14] N. Wiberg,et al. Error estimation and adaptivity in elastodynamics , 1992 .
[15] Jacob Fish,et al. Multiscale enrichment based on partition of unity , 2005 .
[16] Greg L. Bryan,et al. Fluids in the universe: adaptive mesh refinement in cosmology , 1999, Comput. Sci. Eng..
[17] Luiz Velho,et al. Variable Resolution 4‐k Meshes: Concepts and Applications , 2000, Comput. Graph. Forum.
[18] T. Fries,et al. On time integration in the XFEM , 2009 .
[19] T. Belytschko,et al. Extended finite element method for cohesive crack growth , 2002 .
[20] CLOUDS , CRACKS AND FEM ' , 1997 .
[21] Glaucio H. Paulino,et al. Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials , 2007 .
[22] G. H. Paulino,et al. A methodology for adaptive finite element analysis: Towards an integrated computational environment , 1999 .
[23] Xiaopeng Xu,et al. Numerical simulations of fast crack growth in brittle solids , 1994 .
[24] Glaucio H. Paulino,et al. A general topology-based framework for adaptive insertion of cohesive elements in finite element meshes , 2008, Engineering with Computers.
[25] Francesco Costanzo,et al. On the use of space-time finite elements in the solution of elasto-dynamic fracture problems , 2004 .
[26] Steen Krenk,et al. Energy conservation in Newmark based time integration algorithms , 2006 .
[27] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[28] G. Sih. Strain-energy-density factor applied to mixed mode crack problems , 1974 .
[29] L. J. Sluys,et al. A new method for modelling cohesive cracks using finite elements , 2001 .
[30] Glaucio H. Paulino,et al. Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading , 2004 .
[31] Nathan M. Newmark,et al. A Method of Computation for Structural Dynamics , 1959 .
[32] J. W. Foulk,et al. Physics-based Modeling of Brittle Fracture: Cohesive Formulations and the Application of Meshfree Methods , 2000 .
[33] Francisco Armero,et al. Finite elements with embedded strong discontinuities for the modeling of failure in solids , 2007 .
[34] Hubert Maigre,et al. An explicit dynamics extended finite element method. Part 1: Mass lumping for arbitrary enrichment functions , 2009 .
[35] Alain Combescure,et al. Efficient FEM calculation with predefined precision through automatic grid refinement , 2005 .
[36] Anthony R. Ingraffea,et al. Modeling mixed-mode dynamic crack propagation nsing finite elements: Theory and applications , 1988 .
[37] Kyoungsoo Park,et al. Potential-based fracture mechanics using cohesive zone and virtual internal bond modeling , 2009 .
[38] Glaucio H. Paulino,et al. Efficient Handling of Implicit Entities in Reduced Mesh Representations , 2005, J. Comput. Inf. Sci. Eng..
[39] M. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .
[40] T. Belytschko,et al. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .
[41] Glaucio H. Paulino,et al. Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge‐swap operators , 2010 .
[42] D. A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .
[43] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[44] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[45] Glaucio H. Paulino,et al. A unified potential-based cohesive model of mixed-mode fracture , 2009 .
[46] M. Ortiz,et al. Computational modelling of impact damage in brittle materials , 1996 .
[47] Ted Belytschko,et al. Elastic crack growth in finite elements with minimal remeshing , 1999 .
[48] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[49] T. Belytschko,et al. H-adaptive finite element methods for dynamic problems, with emphasis on localization , 1993 .
[50] Michael Ortiz,et al. Three‐dimensional adaptive meshing by subdivision and edge‐collapse in finite‐deformation dynamic–plasticity problems with application to adiabatic shear banding , 2002 .
[51] Nicolas Moës,et al. Mass lumping strategies for X‐FEM explicit dynamics: Application to crack propagation , 2008 .
[52] Glaucio H. Paulino,et al. A compact adjacency‐based topological data structure for finite element mesh representation , 2005 .
[53] Francisco Armero,et al. Finite elements with embedded branching , 2009 .
[54] A. Needleman,et al. The simulation of dynamic crack propagation using the cohesive segments method , 2008 .
[55] M. Rivara. NEW LONGEST-EDGE ALGORITHMS FOR THE REFINEMENT AND/OR IMPROVEMENT OF UNSTRUCTURED TRIANGULATIONS , 1997 .
[56] Glaucio H. Paulino,et al. Integration of singular enrichment functions in the generalized/extended finite element method for three‐dimensional problems , 2009 .