Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture

SUMMARY Adaptive mesh refinement and coarsening schemes are proposed for efficient computational simulation of dynamic cohesive fracture. The adaptive mesh refinement consists of a sequence of edge-split operators, whereas the adaptive mesh coarsening is based on a sequence of vertex-removal (or edge-collapse) operators. Nodal perturbation and edge-swap operators are also employed around the crack tip region to improve crack geometry representation, and cohesive surface elements are adaptively inserted whenever and wherever they are needed by means of an extrinsic cohesive zone model approach. Such adaptive mesh modification events are maintained in conjunction with a topological data structure (TopS). The so-called PPR potentialbased cohesive model (J. Mech. Phys. Solids 2009; 57:891–908) is utilized for the constitutive relationship of the cohesive zone model. The examples investigated include mode I fracture, mixed-mode fracture and crack branching problems. The computational results using mesh adaptivity (refinement and coarsening) are consistent with the results using uniform mesh refinement. The present approach significantly reduces computational cost while exhibiting a multiscale effect that captures both global macro-crack and local micro-cracks. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  Ted Belytschko,et al.  Cracking node method for dynamic fracture with finite elements , 2009 .

[2]  J. Trangenstein Multi-scale iterative techniques and adaptive mesh refinement for flow in porous media , 2002 .

[3]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[4]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[5]  Joseph E. Bishop,et al.  Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations , 2009 .

[6]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[7]  Alain Combescure,et al.  Automatic energy conserving space–time refinement for linear dynamic structural problems , 2005 .

[8]  L. B. Freund,et al.  Fracture Initiation Due to Asymmetric Impact Loading of an Edge Cracked Plate , 1990 .

[9]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[10]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[11]  Glaucio H. Paulino,et al.  Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials , 2005 .

[12]  Nils-Erik Wiberg,et al.  Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .

[13]  Luiz Velho Mesh simplification using four-face clusters , 2001, Proceedings International Conference on Shape Modeling and Applications.

[14]  N. Wiberg,et al.  Error estimation and adaptivity in elastodynamics , 1992 .

[15]  Jacob Fish,et al.  Multiscale enrichment based on partition of unity , 2005 .

[16]  Greg L. Bryan,et al.  Fluids in the universe: adaptive mesh refinement in cosmology , 1999, Comput. Sci. Eng..

[17]  Luiz Velho,et al.  Variable Resolution 4‐k Meshes: Concepts and Applications , 2000, Comput. Graph. Forum.

[18]  T. Fries,et al.  On time integration in the XFEM , 2009 .

[19]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[20]  CLOUDS , CRACKS AND FEM ' , 1997 .

[21]  Glaucio H. Paulino,et al.  Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials , 2007 .

[22]  G. H. Paulino,et al.  A methodology for adaptive finite element analysis: Towards an integrated computational environment , 1999 .

[23]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[24]  Glaucio H. Paulino,et al.  A general topology-based framework for adaptive insertion of cohesive elements in finite element meshes , 2008, Engineering with Computers.

[25]  Francesco Costanzo,et al.  On the use of space-time finite elements in the solution of elasto-dynamic fracture problems , 2004 .

[26]  Steen Krenk,et al.  Energy conservation in Newmark based time integration algorithms , 2006 .

[27]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[28]  G. Sih Strain-energy-density factor applied to mixed mode crack problems , 1974 .

[29]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[30]  Glaucio H. Paulino,et al.  Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading , 2004 .

[31]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[32]  J. W. Foulk,et al.  Physics-based Modeling of Brittle Fracture: Cohesive Formulations and the Application of Meshfree Methods , 2000 .

[33]  Francisco Armero,et al.  Finite elements with embedded strong discontinuities for the modeling of failure in solids , 2007 .

[34]  Hubert Maigre,et al.  An explicit dynamics extended finite element method. Part 1: Mass lumping for arbitrary enrichment functions , 2009 .

[35]  Alain Combescure,et al.  Efficient FEM calculation with predefined precision through automatic grid refinement , 2005 .

[36]  Anthony R. Ingraffea,et al.  Modeling mixed-mode dynamic crack propagation nsing finite elements: Theory and applications , 1988 .

[37]  Kyoungsoo Park,et al.  Potential-based fracture mechanics using cohesive zone and virtual internal bond modeling , 2009 .

[38]  Glaucio H. Paulino,et al.  Efficient Handling of Implicit Entities in Reduced Mesh Representations , 2005, J. Comput. Inf. Sci. Eng..

[39]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[40]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[41]  Glaucio H. Paulino,et al.  Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge‐swap operators , 2010 .

[42]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[43]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[44]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[45]  Glaucio H. Paulino,et al.  A unified potential-based cohesive model of mixed-mode fracture , 2009 .

[46]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[47]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[48]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[49]  T. Belytschko,et al.  H-adaptive finite element methods for dynamic problems, with emphasis on localization , 1993 .

[50]  Michael Ortiz,et al.  Three‐dimensional adaptive meshing by subdivision and edge‐collapse in finite‐deformation dynamic–plasticity problems with application to adiabatic shear banding , 2002 .

[51]  Nicolas Moës,et al.  Mass lumping strategies for X‐FEM explicit dynamics: Application to crack propagation , 2008 .

[52]  Glaucio H. Paulino,et al.  A compact adjacency‐based topological data structure for finite element mesh representation , 2005 .

[53]  Francisco Armero,et al.  Finite elements with embedded branching , 2009 .

[54]  A. Needleman,et al.  The simulation of dynamic crack propagation using the cohesive segments method , 2008 .

[55]  M. Rivara NEW LONGEST-EDGE ALGORITHMS FOR THE REFINEMENT AND/OR IMPROVEMENT OF UNSTRUCTURED TRIANGULATIONS , 1997 .

[56]  Glaucio H. Paulino,et al.  Integration of singular enrichment functions in the generalized/extended finite element method for three‐dimensional problems , 2009 .