Redox‐based Resistive Memory

[1]  Rainer Waser,et al.  Switching kinetics of electrochemical metallization memory cells. , 2013, Physical chemistry chemical physics : PCCP.

[2]  M. Kozicki,et al.  Cation-based resistance change memory , 2013 .

[3]  T. Hasegawa,et al.  Conductance quantization and synaptic behavior in a Ta2O5-based atomic switch , 2012, Nanotechnology.

[4]  S. Balatti,et al.  Evidence for Voltage-Driven Set/Reset Processes in Bipolar Switching RRAM , 2012, IEEE Transactions on Electron Devices.

[5]  R. Waser,et al.  Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. , 2012, Nature materials.

[6]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[7]  R. Waser,et al.  Quantum conductance and switching kinetics of AgI-based microcrossbar cells , 2012, Nanotechnology.

[8]  Byung Joon Choi,et al.  Engineering nonlinearity into memristors for passive crossbar applications , 2012 .

[9]  J. Yang,et al.  Electronic structure and transport measurements of amorphous transition-metal oxides: observation of Fermi glass behavior , 2012 .

[10]  M. Kozicki,et al.  Quantized Conductance in $\hbox{Ag/GeS}_{2}/\hbox{W}$ Conductive-Bridge Memory Cells , 2012, IEEE Electron Device Letters.

[11]  T. Hasegawa,et al.  Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von‐Neumann Computers , 2012, Advanced materials.

[12]  S. Menzel,et al.  Simulation of multilevel switching in electrochemical metallization memory cells , 2012 .

[13]  D. Gilmer,et al.  Metal oxide resistive memory switching mechanism based on conductive filament properties , 2011 .

[14]  R. Dittmann,et al.  Origin of the Ultra‐nonlinear Switching Kinetics in Oxide‐Based Resistive Switches , 2011 .

[15]  R. Williams,et al.  Sub-nanosecond switching of a tantalum oxide memristor , 2011, Nanotechnology.

[16]  Rainer Waser,et al.  Redox processes in silicon dioxide thin films using copper microelectrodes , 2011 .

[17]  D. Ielmini,et al.  Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth , 2011, IEEE Transactions on Electron Devices.

[18]  Herbert Schroeder,et al.  Comment on “Exponential ionic drift: fast switching and low volatility of thin-film memristors” by D.B. Strukov and R.S. Williams in Appl. Phys. A (2009) 94: 515–519 , 2011 .

[19]  Lin Chen,et al.  Device and SPICE modeling of RRAM devices. , 2011, Nanoscale.

[20]  Michael N. Kozicki,et al.  One-dimensional model of the programming kinetics of conductive-bridge memory cells , 2011 .

[21]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[22]  M. Kozicki,et al.  Erratum: Electrochemical metallization memories - Fundamentals, applications, prospects (Nanotechnology (2011) 22 (254003)) , 2011 .

[23]  R. Cavin,et al.  Scaling limits of resistive memories , 2011, Nanotechnology.

[24]  Lifeng Liu,et al.  A physical model for bipolar oxide-based resistive switching memory based on ion-transport-recombination effect , 2011 .

[25]  R. Waser,et al.  TiO2—a prototypical memristive material , 2011, Nanotechnology.

[26]  P. Gonon,et al.  Back-end-of-line compatible Conductive Bridging RAM based on Cu and SiO2 , 2011 .

[27]  Shimeng Yu,et al.  Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM) , 2011, IEEE Transactions on Electron Devices.

[28]  C. H. Cheng,et al.  Ultralow Switching Energy Ni/$\hbox{GeO}_{x}$ /HfON/TaN RRAM , 2011, IEEE Electron Device Letters.

[29]  R. Dittmann,et al.  Coexistence of Filamentary and Homogeneous Resistive Switching in Fe‐Doped SrTiO3 Thin‐Film Memristive Devices , 2010, Advanced materials.

[30]  Myoung-Jae Lee,et al.  Modeling for bipolar resistive memory switching in transition-metal oxides , 2010 .

[31]  K. Terabe,et al.  Forming and switching mechanisms of a cation-migration-based oxide resistive memory , 2010, Nanotechnology.

[32]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[33]  R. Rosezin,et al.  High density 3D memory architecture based on the resistive switching effect , 2009 .

[34]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[35]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[36]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[37]  Rainer Waser,et al.  The influence of copper top electrodes on the resistive switching effect in TiO2 thin films studied by conductive atomic force microscopy , 2009 .

[38]  Dalibor Biolek,et al.  SPICE Model of Memristor with Nonlinear Dopant Drift , 2009 .

[39]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[40]  D. Ielmini,et al.  Voltage-Driven On–Off Transition and Tradeoff With Program and Erase Current in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Electron Device Letters.

[41]  D. Ielmini,et al.  Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Transactions on Electron Devices.

[42]  S. Benderli,et al.  On SPICE macromodelling of TiO 2 memristors , 2009 .

[43]  R. Waser,et al.  Electrode kinetics of Cu–SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories , 2009 .

[44]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[45]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[46]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[47]  R. Waser,et al.  A Novel Reference Scheme for Reading Passive Resistive Crossbar Memories , 2006, IEEE Transactions on Nanotechnology.

[48]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[49]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[50]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[51]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 2001 .

[52]  Juan Carlos Cuevas,et al.  The signature of chemical valence in the electrical conduction through a single-atom contact , 1998, Nature.

[53]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[54]  D. Ielmini,et al.  Complementary Switching in Oxide-Based Bipolar Resistive-Switching Random Memory , 2013, IEEE Transactions on Electron Devices.

[55]  Rainer Waser,et al.  A Simulation Model of Resistive Switching in Electrochemical Metallization Memory Cells (ECM) , 2009 .

[56]  R. Waser,et al.  A Nonvolatile Memory With Resistively Switching Methyl-Silsesquioxane , 2009, IEEE Electron Device Letters.