Computation of Extensions of Seminormal Default Theories

In Reiter's default logic, the operator in the fixed-point definition of extension is not appropriate to compute extensions by its iterated applications. This paper presents a class of alternative operators, called compatible ones, such that, at least for normal default theories and so-called well-founded, ordered default theories, we can get extensions by iterated applications of them. In addition, we completely answer Etherington's conjectures about both his procedure for generating extensions and a modified version of it. In particular, we give an example of a finite, ordered default theory, for which the original procedure fails to converge, and show that the computation of the modified one is essentially the iteration of a compatible operator and converges for finite, ordered theories.

[1]  Gerhard Brewka,et al.  Adding Priorities and Specificity to Default Logic , 1994, JELIA.

[2]  Hudson Turner,et al.  Splitting a Default Theory , 1996, AAAI/IAAI, Vol. 1.

[3]  Grigoris Antoniou,et al.  Nonmonotonic reasoning , 1997 .

[4]  Hector J. Levesque,et al.  A Logic of Implicit and Explicit Belief , 1984, AAAI.

[5]  Christos H. Papadimitriou,et al.  Default Theories that Always Have Extensions , 1994, Artif. Intell..

[6]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[7]  Ju Wang,et al.  R-Calculus: a Logical Approach for Knowledge Base Maintenance , 1995, Int. J. Artif. Intell. Tools.

[8]  Victor W. Marek,et al.  Nonmonotonic logic - context-dependent reasoning , 1997, Artificial intelligence.

[9]  David W. Etherington Formalizing Nonmonotonic Reasoning Systems , 1987, Artif. Intell..

[10]  James M. Crawford,et al.  Toward Efficient Default Reasoning , 1996, AAAI/IAAI, Vol. 1.

[11]  Georg Gottlob,et al.  Complexity Results for Nonmonotonic Logics , 1992, J. Log. Comput..

[12]  Marco Cadoli Tractable Reasoning in Artificial Intelligence , 1995, Lecture Notes in Computer Science.

[13]  Drew McDermott,et al.  Non-Monotonic Logic I , 1987, Artif. Intell..

[14]  Victor W. Marek,et al.  Default Reasoning System DeReS , 1996, KR.

[15]  Franz Baader,et al.  How to Prefer More Specific Defaults in Terminological Default Logic , 1993, IJCAI.

[16]  G. F. Shvarts,et al.  Fixed Points in the Propositional Nonmonotonic Logic , 1989, Artif. Intell..

[17]  Camilla Schwind,et al.  A Tableau-Based Theorem Prover for a Decidable Subset of Default Logic , 1990, CADE.

[18]  Georg Gottlob,et al.  Well-Founded Semantics for Default Logic , 1997, Fundam. Informaticae.

[19]  Marco Schaerf,et al.  A Survey of Complexity Results for Nonmonotonic Logics , 1993, J. Log. Program..

[20]  Torsten Schaub,et al.  A General Approach to Specificity in Default Reasoning , 1994, KR.

[21]  Philippe Besnard,et al.  An Introduction to Default Logic , 1989, Symbolic Computation.

[22]  Bart Selman,et al.  Forming Concepts for Fast Inference , 1992, AAAI.

[23]  David W. Etherington Reasoning With Incomplete Information , 1988 .

[24]  Jon Doyle,et al.  Truth Maintenance Systems for Problem Solving , 1977, IJCAI.