An apaH mutation causes AppppA to accumulate and affects motility and catabolite repression in Escherichia coli.

apaH- mutants lack the hydrolase responsible for degradation of AppppN dinucleotides in Escherichia coli and show a greater than or equal to 16-fold increase in AppppA under nonstress conditions. These mutants lack detectable activity of sigma F, a factor required for transcription of motility and chemotaxis genes. Expression of the flbB/flaI operon, thought to encode sigma F, is decreased in apaH- mutants, and there appears to be a general decrease in expression of genes regulated by cAMP-binding protein and cAMP as well.