Proof of the bandwidth conjecture of Bollobás and Komlós
暂无分享,去创建一个
[1] P. Lax. Proof of a conjecture of P. Erdös on the derivative of a polynomial , 1944 .
[2] G. Dirac. Some Theorems on Abstract Graphs , 1952 .
[3] Andras Hajnal,et al. On the maximal number of independent circuits in a graph , 1963 .
[4] P. Erdös. On the structure of linear graphs , 1946 .
[5] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[6] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[7] Vojtech Rödl,et al. The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory B.
[8] Noga Alon,et al. AlmostH-factors in dense graphs , 1992, Graphs Comb..
[9] M. Aigner,et al. Embedding Arbitrary Graphs of Maximum Degree Two , 1993 .
[10] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[11] Noga Alon,et al. AlmostH-factors in dense graphs , 1992, Graphs Comb..
[12] Noga Alon,et al. 2-factors in Dense Graphs , 1996, Discret. Math..
[13] János Komlós,et al. Blow-up Lemma , 1997, Combinatorics, Probability and Computing.
[14] Endre Szemerédi,et al. Proof of the Seymour conjecture for large graphs , 1998 .
[15] Vojtech Rödl,et al. Perfect Matchings in ε-Regular Graphs and the Blow-Up Lemma , 1999, Comb..
[16] J. Komlos. The Blow-up Lemma , 1999, Combinatorics, Probability and Computing.
[17] János Komlós,et al. Tiling Turán Theorems , 2000, Comb..
[18] Sarmad Abbasi. How Tight Is the Bollobás-Komlós Conjecture? , 2000, Graphs Comb..
[19] János Komlós,et al. Spanning Trees in Dense Graphs , 2001, Combinatorics, Probability and Computing.
[20] János Komlós,et al. Proof of the Alon-Yuster conjecture , 2001, Discret. Math..
[21] Andrzej Czygrinow,et al. 2-factors in Dense Bipartite Graphs , 2002, Discret. Math..
[22] G. W. Peck,et al. Kleitman and Combinatorics: A Celebration , 2002, Discret. Math..
[23] Ali Shokoufandeh,et al. Proof of a tiling conjecture of Komlós , 2003, Random Struct. Algorithms.
[24] Endre Szemerédi,et al. Proof of a Conjecture of Bollobás and Eldridge for Graphs of Maximum Degree Three* , 2003, Comb..
[25] Daniela Kühn,et al. Large planar subgraphs in dense graphs , 2005, J. Comb. Theory, Ser. B.
[26] D. Osthus,et al. Spanning triangulations in graphs , 2005 .
[27] Daniela Kühn,et al. Critical chromatic number and the complexity of perfect packings in graphs , 2006, SODA '06.
[28] S Koilraj,et al. Labelings of graphs , 2008 .
[29] Mathias Schacht,et al. Spanning 3-colourable subgraphs of small bandwidth in dense graphs , 2008, J. Comb. Theory, Ser. B.
[30] Julia Böttcher,et al. Bandwidth, treewidth, separators, expansion, and universality , 2008, Electron. Notes Discret. Math..
[31] Daniela Kühn,et al. The minimum degree threshold for perfect graph packings , 2009, Comb..
[32] Victor Alexandrov,et al. Problem section , 2007 .