Proof of the bandwidth conjecture of Bollobás and Komlós

In this paper we prove the following conjecture by Bollobás and Komlós: For every γ > 0 and integers r ≥ 1 and Δ, there exists β > 0 with the following property. If G is a sufficiently large graph with n vertices and minimum degree at least ((r − 1)/r + γ)n and H is an r-chromatic graph with n vertices, bandwidth at most βn and maximum degree at most Δ, then G contains a copy of H.

[1]  P. Lax Proof of a conjecture of P. Erdös on the derivative of a polynomial , 1944 .

[2]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[3]  Andras Hajnal,et al.  On the maximal number of independent circuits in a graph , 1963 .

[4]  P. Erdös On the structure of linear graphs , 1946 .

[5]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[6]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[7]  Vojtech Rödl,et al.  The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory B.

[8]  Noga Alon,et al.  AlmostH-factors in dense graphs , 1992, Graphs Comb..

[9]  M. Aigner,et al.  Embedding Arbitrary Graphs of Maximum Degree Two , 1993 .

[10]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[11]  Noga Alon,et al.  AlmostH-factors in dense graphs , 1992, Graphs Comb..

[12]  Noga Alon,et al.  2-factors in Dense Graphs , 1996, Discret. Math..

[13]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[14]  Endre Szemerédi,et al.  Proof of the Seymour conjecture for large graphs , 1998 .

[15]  Vojtech Rödl,et al.  Perfect Matchings in ε-Regular Graphs and the Blow-Up Lemma , 1999, Comb..

[16]  J. Komlos The Blow-up Lemma , 1999, Combinatorics, Probability and Computing.

[17]  János Komlós,et al.  Tiling Turán Theorems , 2000, Comb..

[18]  Sarmad Abbasi How Tight Is the Bollobás-Komlós Conjecture? , 2000, Graphs Comb..

[19]  János Komlós,et al.  Spanning Trees in Dense Graphs , 2001, Combinatorics, Probability and Computing.

[20]  János Komlós,et al.  Proof of the Alon-Yuster conjecture , 2001, Discret. Math..

[21]  Andrzej Czygrinow,et al.  2-factors in Dense Bipartite Graphs , 2002, Discret. Math..

[22]  G. W. Peck,et al.  Kleitman and Combinatorics: A Celebration , 2002, Discret. Math..

[23]  Ali Shokoufandeh,et al.  Proof of a tiling conjecture of Komlós , 2003, Random Struct. Algorithms.

[24]  Endre Szemerédi,et al.  Proof of a Conjecture of Bollobás and Eldridge for Graphs of Maximum Degree Three* , 2003, Comb..

[25]  Daniela Kühn,et al.  Large planar subgraphs in dense graphs , 2005, J. Comb. Theory, Ser. B.

[26]  D. Osthus,et al.  Spanning triangulations in graphs , 2005 .

[27]  Daniela Kühn,et al.  Critical chromatic number and the complexity of perfect packings in graphs , 2006, SODA '06.

[28]  S Koilraj,et al.  Labelings of graphs , 2008 .

[29]  Mathias Schacht,et al.  Spanning 3-colourable subgraphs of small bandwidth in dense graphs , 2008, J. Comb. Theory, Ser. B.

[30]  Julia Böttcher,et al.  Bandwidth, treewidth, separators, expansion, and universality , 2008, Electron. Notes Discret. Math..

[31]  Daniela Kühn,et al.  The minimum degree threshold for perfect graph packings , 2009, Comb..

[32]  Victor Alexandrov,et al.  Problem section , 2007 .