GLOBAL EXISTENCE OF WEAK SOLUTIONS FOR A LOGARITHMIC WAVE EQUATION ARISING FROM Q-BALL DYNAMICS

In this paper we investigate an initial boundary value prob- lem of a logarithmic wave equation. We establish the global existence of weak solutions to the problem by using Galerkin method, logarithmic Sobolev inequality and compactness theorem. In this paper we study the global existence of weak solutions for the initial boundary value problem 8 utt − �u + u − ulogjuj 2 + ut + juj 2 u = 0, (x,t) 2 � (0,T), u = 0, (x,t) 2 @ � (0,T), u(x,0) = u 0 (x), ut(x,0) = u 1 (x), x 2 ,

[1]  P. Górka Convergence of Logarithmic Quantum Mechanics to the Linear One , 2007 .

[2]  A. Haraux,et al.  Équations d'évolution avec non linéarité logarithmique , 1980 .

[3]  P. Górka,et al.  Logarithmic Klein-Gordon Equation , 2009 .

[4]  Andrei Linde,et al.  Measure Problem for Eternal and Non-Eternal Inflation , 2010, 1006.2170.

[5]  The equation of the $ p$-adic open string for the scalar tachyon field , 2005, math-ph/0507018.

[6]  P. Górka Logarithmic Quantum Mechanics: Existence of the Ground State , 2006 .

[7]  Inflationary models with logarithmic potentials. , 1995, Physical review. D, Particles and fields.

[8]  Strings, textures, inflation and spectrum bending , 1992, hep-ph/9203214.

[9]  C. Godano,et al.  Logarithmic Schrödinger-like equation as a model for magma transport , 2003 .

[10]  T. Cazenave Stable solutions of the logarithmic Schrödinger equation , 1983 .

[11]  Ole Bang,et al.  Unified model for partially coherent solitons in logarithmically nonlinear media , 2000 .

[12]  M. Ledoux,et al.  Logarithmic Sobolev Inequalities , 2014 .

[13]  P. Górka,et al.  Functional calculus via laplace transform and equations with infinitely many derivatives , 2010 .

[14]  I. Bialynicki-Birula,et al.  Nonlinear Wave Mechanics , 1976 .

[15]  P. Górka,et al.  Nonlinear Equations with Infinitely many Derivatives , 2011 .

[16]  James Brown,et al.  Strings , 1930, The Python Book.

[17]  M Segev,et al.  Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Nonlinear Dynamics Equation in p-Adic String Theory , 2003, math-ph/0306018.

[19]  CHIN-YUAN LIN,et al.  Nonlinear evolution equations , 2000 .

[20]  P. Górka,et al.  One-dimensional Klein–Gordon equation with logarithmic nonlinearities , 2008 .

[21]  Y. Giga,et al.  Global Existence of Two-Dimensional Navier—Stokes Flow with Nondecaying Initial Velocity , 2001 .