Loop‐Shaping and Easy Tuning of Fractional‐Order Proportional Integral Controllers for Position Servo Systems

This paper develops simple formulas directly relating performance specifications to control parameters of fractional-order proportional integral (PI) controllers for position servo systems. With the proposed controller settings, the open-loop frequency response achieves a good phase margin, that remains constant in a wide range around the crossover frequency. Consequently, the tuning results in high stability robustness to gain variations in the loop. Moreover, the fractional order integration also leads to limited overshoot and short settling time. Laboratory experiments confirm simulation results.

[1]  Mehmet Önder Efe,et al.  Battery power loss compensated fractional order sliding mode control of a quadrotor UAV , 2012 .

[2]  B. Onaral,et al.  Fractal system as represented by singularity function , 1992 .

[3]  I. Podlubny,et al.  On fractional derivatives, fractional-order dynamic systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[4]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[5]  A. J. Calderón,et al.  On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties , 2004 .

[6]  YangQuan Chen,et al.  UBIQUITOUS FRACTIONAL ORDER CONTROLS , 2006 .

[7]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[8]  P. Lino,et al.  New tuning rules for fractional PIα controllers , 2007 .

[9]  Werner Leonhard,et al.  Control of Electrical Drives , 1990 .

[10]  J. A. Tenreiro Machado,et al.  Tuning of PID Controllers Based on Bode’s Ideal Transfer Function , 2004 .

[11]  Guido Maione,et al.  Continued fractions approximation of the impulse response of fractional-order dynamic systems , 2008 .

[12]  Bing-Gang Cao,et al.  Design of Fractional Order Controller Based on Particle Swarm Optimization , 2006 .

[13]  Mehmet Önder Efe,et al.  A Sufficient Condition for Checking the Attractiveness of a Sliding Manifold in Fractional Order Sliding Mode Control , 2012 .

[14]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[15]  Hyo-Sung Ahn,et al.  Fractional‐order iterative learning control for fractional‐order linear systems , 2011 .

[16]  B. Lurie,et al.  Classical feedback control with MATLAB , 2000 .

[17]  Tongwen Chen,et al.  Tuning of fractional PI controllers for fractional order system models with and without time delays , 2010, Proceedings of the 2010 American Control Conference.

[18]  Chengbin Ma,et al.  Fractional-order control: Theory and applications in motion control [Past and present] , 2007, IEEE Industrial Electronics Magazine.

[19]  I. Podlubny,et al.  On Fractional Derivatives, Fractional-Order Dynamic Systems and PIW-controllers , 1997 .

[20]  J. A. Tenreiro Machado,et al.  On the Fractional PID Control of a Laboratory Servo System , 2008 .

[21]  Thomas R. Yechout,et al.  Classical Feedback Control , 2003 .

[22]  Guido Maione,et al.  Analog Realizations of Fractional-order Integrators/Differentiators - A Comparison , 2018, ICINCO-SPSMC.

[23]  A. Tustin,et al.  The design of systems for automatic control of the position of massive objects , 1958 .

[24]  Maciejowsk Multivariable Feedback Design , 1989 .

[25]  Juha T. Tanttu,et al.  TUNING OF PID CONROLLERS: SURVEY OF SISO AND MIMO TECHNIQUES , 1991 .

[26]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[27]  A. Charef,et al.  Parameter Tuning of Fractional PIλDμ Controllers With Integral Performance Criterion , 2008 .

[28]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[29]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .