Inclusion of rare taxa from Blattidae and Anaplectidae improves phylogenetic resolution in the cockroach superfamily Blattoidea
暂无分享,去创建一个
S. Ho | Zongqing Wang | Yanli Che | Wenbo Deng | Xinxing Luo | Shuran Liao | Xin-Xing Luo
[1] N. Lo,et al. Vicariance and Dispersal Events Inferred from Mitochondrial Genomes and Nuclear Genes (18S, 28S) Shaped Global Cryptocercus Distributions. , 2021, Molecular phylogenetics and evolution.
[2] Rong Chen,et al. Exploring the relationship of Homalosilpha and Mimosilpha (Blattodea, Blattidae, Blattinae) from a morphological and molecular perspective, including a description of four new species , 2021, PeerJ.
[3] W. Xu,et al. Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification , 2020, National science review.
[4] Zongqing Wang,et al. Eight new species of the genus Anaplecta Burmeister, 1838 (Blattodea: Blattoidea: Anaplectidae) from China based on molecular and morphological data , 2020 .
[5] Zongqing Wang,et al. The first blattid cockroach (Dictyoptera: Blattodea) in Cretaceous amber and the reconsideration of purported Blattidae , 2020 .
[6] S. Ho,et al. Evolutionary rates are correlated between cockroach symbionts and mitochondrial genomes , 2020, Biology Letters.
[7] S. Ho,et al. Calibrations from the Fossil Record , 2020 .
[8] S. Ho,et al. Uplift‐driven diversification revealed by the historical biogeography of the cockroach Cryptocercus Scudder (Blattodea: Cryptocercidae) in eastern Asia , 2020, Systematic Entomology.
[9] Olga Chernomor,et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.
[10] M. Shi,et al. Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies , 2019, Current Biology.
[11] S. Ho,et al. Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction , 2019, Proceedings of the Royal Society B.
[12] Zongqing Wang,et al. First record of Blattulidae from mid-Cretaceous Burmese amber (Insecta: Dictyoptera) , 2019, Cretaceous Research.
[13] Zongqing Wang,et al. A new corydiid cockroach with large holoptic eyes in Upper Cretaceous Burmese amber (Blattodea: Corydiidae: Euthyrrhaphinae) , 2019, Cretaceous Research.
[14] B. Misof,et al. An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea) , 2019, Proceedings of the Royal Society B.
[15] Suqin Fang,et al. Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau , 2018, Global Ecology and Biogeography.
[16] Dominic A. Evangelista,et al. Topological support and data quality can only be assessed through multiple tests in reviewing Blattodea phylogeny. , 2018, Molecular phylogenetics and evolution.
[17] F. Prosdocimi,et al. mitoMaker: A Pipeline for Automatic Assembly and Annotation of Animal Mitochondria Using Raw NGS Data , 2018 .
[18] Marie Djernæs. Biodiversity of Blattodea – the Cockroaches and Termites , 2018 .
[19] M. Suchard,et al. Posterior summarisation in Bayesian phylogenetics using Tracer , 2022 .
[20] S. Ho,et al. Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics , 2018, Molecular biology and evolution.
[21] Daniel L. Ayres,et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 , 2018, Virus evolution.
[22] M. Kohli,et al. Fossil calibrations for the cockroach phylogeny (Insecta, Dictyoptera, Blattodea), comments on the use of wings for their identification, and a redescription of the oldest Blaberidae , 2017 .
[23] N. Lo,et al. Reconstructing the phylogeny of Blattodea: robust support for interfamilial relationships and major clades , 2017, Scientific Reports.
[24] Robert K. Colwell,et al. Mobile hotspots and refugia of avian diversity in the mountains of south‐west China under past and contemporary global climate change , 2017 .
[25] Robert Lanfear,et al. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.
[26] N. Lo,et al. A global molecular phylogeny and timescale of evolution for Cryptocercus woodroaches. , 2016, Molecular phylogenetics and evolution.
[27] Zongqing Wang,et al. Protagonista lugubris, a cockroach species new to China and its contribution to the revision of genus Protagonista, with notes on the taxonomy of Archiblattinae (Blattodea, Blattidae) , 2016, ZooKeys.
[28] Sudhir Kumar,et al. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.
[29] Gavin J. Svenson,et al. Phylogeny of Dictyoptera: Dating the Origin of Cockroaches, Praying Mantises and Termites with Molecular Data and Controlled Fossil Evidence , 2015, PloS one.
[30] K. Klass,et al. Identifying possible sister groups of Cryptocercidae+Isoptera: a combined molecular and morphological phylogeny of Dictyoptera. , 2015, Molecular phylogenetics and evolution.
[31] C. E. Cook,et al. A Formal Re-Description of the Cockroach Hebardina concinna Anchored on DNA Barcodes Confirms Wing Polymorphism and Identifies Morphological Characters for Field Identification , 2014, PloS one.
[32] P. Stadler,et al. MITOS: improved de novo metazoan mitochondrial genome annotation. , 2013, Molecular phylogenetics and evolution.
[33] N. Trewin,et al. Discussion on ‘A high-precision U–Pb age constraint on the Rhynie Chert Konservat-Lagerstätte: time scale and other implications’ , 2013, Journal of the Geological Society.
[34] H. Bohn. BLATTA FORCATA (KARNY), THE NEAREST RELATIVE OF THE ORIENTAL COCKROACH (BLATTA ORIENTALIS L.) (INSECTA: BLATTODEA: BLATTIDAE) , 2013 .
[35] O. F. Gallego,et al. The Triassic insect fauna from Argentina: Coleoptera from the Los Rastros Formation (Bermejo Basin), La Rioja Province , 2013 .
[36] A. Moya,et al. Comparative Genomics of Blattabacterium cuenoti: The Frozen Legacy of an Ancient Endosymbiont Genome , 2013, Genome biology and evolution.
[37] Zhijun Zhang,et al. The most ancient roach (Blattodea): a new genus and species from the earliest Late Carboniferous (Namurian) of China, with a discussion of the phylomorphogeny of early blattids , 2013 .
[38] Maxim Teslenko,et al. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.
[39] K. Klass,et al. Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out‐group sampling , 2012 .
[40] O. Gascuel,et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.
[41] S. Ho,et al. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. , 2009, Systematic biology.
[42] D. Grimaldi,et al. Diverse Rhinotermitidae and Termitidae (Isoptera) in Dominican Amber , 2009 .
[43] J. Murienne. Molecular data confirm family status for the Tryonicus–Lauraesilpha group (Insecta: Blattodea: Tryonicidae) , 2009 .
[44] K. Klass,et al. Relationships among the major lineages of Dictyoptera: the effect of outgroup selection on dictyopteran tree topology , 2008 .
[45] K. Klass,et al. Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs. Parasphaeria boleiriana. , 2008, Molecular phylogenetics and evolution.
[46] Edward Osborne Wilson,et al. Cockroaches: Ecology, Behavior, and Natural History , 2007 .
[47] P. Eggleton,et al. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches , 2007, Biology Letters.
[48] W. Wheeler,et al. The evolutionary transition from subsocial to eusocial behaviour in Dictyoptera: phylogenetic evidence for modification of the "shift-in-dependent-care" hypothesis with a new subsocial cockroach. , 2007, Molecular phylogenetics and evolution.
[49] R. Hanus,et al. Juvenile hormone III, hydroprene and a juvenogen as soldier caste differentiation regulators in three Reticulitermes species: potential of juvenile hormone analogues in termite control. , 2006, Pest management science.
[50] S. Ho,et al. Uplift of the Tibetan plateau: evidence from divergence times of glyptosternoid catfishes. , 2006, Molecular phylogenetics and evolution.
[51] C. Bandi,et al. Molecular Phylogeny of Cryptocercus Wood-roaches Based on Mitochondrial COII and 16S Sequences, and Chromosome Numbers in Palearctic Representatives , 2006, Zoological science.
[52] S. Ho,et al. Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.
[53] R. Meier,et al. A phylogenetic analysis of Dictyoptera ( Insecta ) based on morphological characters , 2006 .
[54] Zuofu Xiang,et al. Quantitative Analysis of Land Mammal Zoogeographical Regions in China and Adjacent Regions , 2004 .
[55] C. Bandi,et al. Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. , 2003, Molecular biology and evolution.
[56] L. Roth. Systematics and phylogeny of cockroaches (Dictyoptera: Blattaria) , 2003 .
[57] D. Grimaldi,et al. The First Cretaceous Rhinotermitidae (Isoptera): A New Species, Genus, and Subfamily in Burmese Amber , 2003 .
[58] Yong Wang,et al. An index of substitution saturation and its application. , 2003, Molecular phylogenetics and evolution.
[59] M. Salemi,et al. The phylogenetic handbook : a practical approach to DNA and protein phylogeny , 2003 .
[60] Hidetoshi Shimodaira. An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.
[61] H. Noda,et al. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches , 2000, Current Biology.
[62] R. Fu,et al. Numerical simulation of the collision between Indian and Eurasian Plates and the deformations of the present Chinese continent , 2000 .
[63] E. M. Cancello,et al. New fossil termite species: Dolichorhinotermes dominicanus from Dominican amber (Isoptera, Rhinotermitidae, Rhinotermitinae). , 2000 .
[64] S. Eddy,et al. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.
[65] P. Grandcolas. Systématique phylogénétique de la sous-famille des Tryonicinae (Dictyoptera, Blattaria, Blattidae) , 1997 .
[66] K. Klass. external male genitalia and phylogeny of Blattaria and Mantodea , 1997 .
[67] Philippe Grandcolas,et al. The phylogeny of cockroach families: a cladistic appraisal of morpho-anatomical data , 1996 .
[68] Xavier Martínez-Delclós. Blástidos (Insecta,Blattodea) del Cretácico Inferior de España. Familia Mesoblattinidae, Blattulidae y Poliphagidae , 1993 .
[69] Louis M Ruth. The genus Tryonicus Shaw from Australia and New Caledonia (Dictyoptera: Blattaria: Blattidae: Tryonicinae) , 1987 .
[70] E. Jarzembowski. An early Cretaceous termite from southern England (Isoptera: Hodotermitidae) , 1981 .
[71] S. Asahina. Taxonomic notes on non-domiciliary Periplaneta species from the Ryukyus, Taiwan, Hong Kong and Thailand , 1980 .
[72] L. Roth,et al. Neotropical Cockroaches of the Epilampra abdomennigrum Complex; a Clarification of Their Systematics (Dictyoptera, Blattaria) , 1969 .
[73] L. Roth. The Evolution of Male Tergal Glands in the Blattaria , 1969 .
[74] Ashley B. Gurney,et al. Evolutionary Studies of Cockroaches , 1965 .
[75] Annals and Magazine of Natural History , 1952, Nature.
[76] C. Bruijning. Studies on Malayan Blattidae , 1948 .
[77] G. B. D.Sc.. XXIV.—On some new or interesting Asiatic Blattodea , 1938 .
[78] M. B.,et al. A Synonymic Catalogue of Orthoptera , 1905, Nature.