Inclusion of rare taxa from Blattidae and Anaplectidae improves phylogenetic resolution in the cockroach superfamily Blattoidea

Cockroaches are an ecologically and economically important insect group, but some fundamental aspects of their evolutionary history remain unresolved. In particular, there are outstanding questions about some of the deeper relationships among cockroach families. As a group transferred from Blaberoidea Saussure to Blattoidea Latreille, the evolutionary history of the family Anaplectidae Walker requires re‐evaluation. In our study, we infer the phylogeny of Blattoidea based on the mitochondrial genomes of 28 outgroup taxa and 67 ingroup taxa, including 25 newly sequenced blattoid species mainly from the families Anaplectidae and Blattidae Latreille. Our results indicate that Blattoidea is the sister group of the remaining Blattodea Brunner von Wattenwyl and that Blattoidea can be divided into three main clades: Blattidae + Tryonicidae McKittrick & Mackerras, Lamproblattidae McKittrick + Anaplectidae and Termitoidae Latreille + Cryptocercidae Handlirsch. Our analyses provide robust support for previously uncertain hypotheses. The sister group of Termitoidae + Cryptocercidae (Xylophagodea Engel) is inferred to constitute the rest of Blattoidea, for the first time. Within Blattidae, Hebardina Bey‐Bienko is placed as the sister lineage to the rest of Blattidae. The subfamily Archiblattinae is polyphyletic, Blattinae is paraphyletic and Polyzosteriinae is monophyletic (Macrocercinae Roth not included); the genus Periplaneta Burmrister is polyphyletic. Based on the results of our phylogenetic analyses, we have revised these taxa. A new subfamily, Hebardininae subfam.nov., is proposed in Blattidae. Archiblattinae and Shelfordella Adelung are synonymized with Blattinae and Periplaneta, respectively: Archiblattinae Kirby syn.nov. and Shelfordella Adelung syn.nov. Our inferred divergence times indicate that Blattoidea emerged in the Late Triassic, with six families in Blattoidea diverging in the Middle and Late Jurassic. We suggest that the divergences among lineages of Asian Blattidae and Anaplectidae were driven by the uplift of the Himalayas and deglaciation during the Quaternary, leading to the present‐day distributions of these taxa.

[1]  N. Lo,et al.  Vicariance and Dispersal Events Inferred from Mitochondrial Genomes and Nuclear Genes (18S, 28S) Shaped Global Cryptocercus Distributions. , 2021, Molecular phylogenetics and evolution.

[2]  Rong Chen,et al.  Exploring the relationship of Homalosilpha and Mimosilpha (Blattodea, Blattidae, Blattinae) from a morphological and molecular perspective, including a description of four new species , 2021, PeerJ.

[3]  W. Xu,et al.  Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification , 2020, National science review.

[4]  Zongqing Wang,et al.  Eight new species of the genus Anaplecta Burmeister, 1838 (Blattodea: Blattoidea: Anaplectidae) from China based on molecular and morphological data , 2020 .

[5]  Zongqing Wang,et al.  The first blattid cockroach (Dictyoptera: Blattodea) in Cretaceous amber and the reconsideration of purported Blattidae , 2020 .

[6]  S. Ho,et al.  Evolutionary rates are correlated between cockroach symbionts and mitochondrial genomes , 2020, Biology Letters.

[7]  S. Ho,et al.  Calibrations from the Fossil Record , 2020 .

[8]  S. Ho,et al.  Uplift‐driven diversification revealed by the historical biogeography of the cockroach Cryptocercus Scudder (Blattodea: Cryptocercidae) in eastern Asia , 2020, Systematic Entomology.

[9]  Olga Chernomor,et al.  IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.

[10]  M. Shi,et al.  Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies , 2019, Current Biology.

[11]  S. Ho,et al.  Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction , 2019, Proceedings of the Royal Society B.

[12]  Zongqing Wang,et al.  First record of Blattulidae from mid-Cretaceous Burmese amber (Insecta: Dictyoptera) , 2019, Cretaceous Research.

[13]  Zongqing Wang,et al.  A new corydiid cockroach with large holoptic eyes in Upper Cretaceous Burmese amber (Blattodea: Corydiidae: Euthyrrhaphinae) , 2019, Cretaceous Research.

[14]  B. Misof,et al.  An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea) , 2019, Proceedings of the Royal Society B.

[15]  Suqin Fang,et al.  Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau , 2018, Global Ecology and Biogeography.

[16]  Dominic A. Evangelista,et al.  Topological support and data quality can only be assessed through multiple tests in reviewing Blattodea phylogeny. , 2018, Molecular phylogenetics and evolution.

[17]  F. Prosdocimi,et al.  mitoMaker: A Pipeline for Automatic Assembly and Annotation of Animal Mitochondria Using Raw NGS Data , 2018 .

[18]  Marie Djernæs Biodiversity of Blattodea – the Cockroaches and Termites , 2018 .

[19]  M. Suchard,et al.  Posterior summarisation in Bayesian phylogenetics using Tracer , 2022 .

[20]  S. Ho,et al.  Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics , 2018, Molecular biology and evolution.

[21]  Daniel L. Ayres,et al.  Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 , 2018, Virus evolution.

[22]  M. Kohli,et al.  Fossil calibrations for the cockroach phylogeny (Insecta, Dictyoptera, Blattodea), comments on the use of wings for their identification, and a redescription of the oldest Blaberidae , 2017 .

[23]  N. Lo,et al.  Reconstructing the phylogeny of Blattodea: robust support for interfamilial relationships and major clades , 2017, Scientific Reports.

[24]  Robert K. Colwell,et al.  Mobile hotspots and refugia of avian diversity in the mountains of south‐west China under past and contemporary global climate change , 2017 .

[25]  Robert Lanfear,et al.  PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. , 2016, Molecular biology and evolution.

[26]  N. Lo,et al.  A global molecular phylogeny and timescale of evolution for Cryptocercus woodroaches. , 2016, Molecular phylogenetics and evolution.

[27]  Zongqing Wang,et al.  Protagonista lugubris, a cockroach species new to China and its contribution to the revision of genus Protagonista, with notes on the taxonomy of Archiblattinae (Blattodea, Blattidae) , 2016, ZooKeys.

[28]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[29]  Gavin J. Svenson,et al.  Phylogeny of Dictyoptera: Dating the Origin of Cockroaches, Praying Mantises and Termites with Molecular Data and Controlled Fossil Evidence , 2015, PloS one.

[30]  K. Klass,et al.  Identifying possible sister groups of Cryptocercidae+Isoptera: a combined molecular and morphological phylogeny of Dictyoptera. , 2015, Molecular phylogenetics and evolution.

[31]  C. E. Cook,et al.  A Formal Re-Description of the Cockroach Hebardina concinna Anchored on DNA Barcodes Confirms Wing Polymorphism and Identifies Morphological Characters for Field Identification , 2014, PloS one.

[32]  P. Stadler,et al.  MITOS: improved de novo metazoan mitochondrial genome annotation. , 2013, Molecular phylogenetics and evolution.

[33]  N. Trewin,et al.  Discussion on ‘A high-precision U–Pb age constraint on the Rhynie Chert Konservat-Lagerstätte: time scale and other implications’ , 2013, Journal of the Geological Society.

[34]  H. Bohn BLATTA FORCATA (KARNY), THE NEAREST RELATIVE OF THE ORIENTAL COCKROACH (BLATTA ORIENTALIS L.) (INSECTA: BLATTODEA: BLATTIDAE) , 2013 .

[35]  O. F. Gallego,et al.  The Triassic insect fauna from Argentina: Coleoptera from the Los Rastros Formation (Bermejo Basin), La Rioja Province , 2013 .

[36]  A. Moya,et al.  Comparative Genomics of Blattabacterium cuenoti: The Frozen Legacy of an Ancient Endosymbiont Genome , 2013, Genome biology and evolution.

[37]  Zhijun Zhang,et al.  The most ancient roach (Blattodea): a new genus and species from the earliest Late Carboniferous (Namurian) of China, with a discussion of the phylomorphogeny of early blattids , 2013 .

[38]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[39]  K. Klass,et al.  Phylogeny of cockroaches (Insecta, Dictyoptera, Blattodea), with placement of aberrant taxa and exploration of out‐group sampling , 2012 .

[40]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[41]  S. Ho,et al.  Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. , 2009, Systematic biology.

[42]  D. Grimaldi,et al.  Diverse Rhinotermitidae and Termitidae (Isoptera) in Dominican Amber , 2009 .

[43]  J. Murienne Molecular data confirm family status for the Tryonicus–Lauraesilpha group (Insecta: Blattodea: Tryonicidae) , 2009 .

[44]  K. Klass,et al.  Relationships among the major lineages of Dictyoptera: the effect of outgroup selection on dictyopteran tree topology , 2008 .

[45]  K. Klass,et al.  Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs. Parasphaeria boleiriana. , 2008, Molecular phylogenetics and evolution.

[46]  Edward Osborne Wilson,et al.  Cockroaches: Ecology, Behavior, and Natural History , 2007 .

[47]  P. Eggleton,et al.  Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches , 2007, Biology Letters.

[48]  W. Wheeler,et al.  The evolutionary transition from subsocial to eusocial behaviour in Dictyoptera: phylogenetic evidence for modification of the "shift-in-dependent-care" hypothesis with a new subsocial cockroach. , 2007, Molecular phylogenetics and evolution.

[49]  R. Hanus,et al.  Juvenile hormone III, hydroprene and a juvenogen as soldier caste differentiation regulators in three Reticulitermes species: potential of juvenile hormone analogues in termite control. , 2006, Pest management science.

[50]  S. Ho,et al.  Uplift of the Tibetan plateau: evidence from divergence times of glyptosternoid catfishes. , 2006, Molecular phylogenetics and evolution.

[51]  C. Bandi,et al.  Molecular Phylogeny of Cryptocercus Wood-roaches Based on Mitochondrial COII and 16S Sequences, and Chromosome Numbers in Palearctic Representatives , 2006, Zoological science.

[52]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[53]  R. Meier,et al.  A phylogenetic analysis of Dictyoptera ( Insecta ) based on morphological characters , 2006 .

[54]  Zuofu Xiang,et al.  Quantitative Analysis of Land Mammal Zoogeographical Regions in China and Adjacent Regions , 2004 .

[55]  C. Bandi,et al.  Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. , 2003, Molecular biology and evolution.

[56]  L. Roth Systematics and phylogeny of cockroaches (Dictyoptera: Blattaria) , 2003 .

[57]  D. Grimaldi,et al.  The First Cretaceous Rhinotermitidae (Isoptera): A New Species, Genus, and Subfamily in Burmese Amber , 2003 .

[58]  Yong Wang,et al.  An index of substitution saturation and its application. , 2003, Molecular phylogenetics and evolution.

[59]  M. Salemi,et al.  The phylogenetic handbook : a practical approach to DNA and protein phylogeny , 2003 .

[60]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[61]  H. Noda,et al.  Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches , 2000, Current Biology.

[62]  R. Fu,et al.  Numerical simulation of the collision between Indian and Eurasian Plates and the deformations of the present Chinese continent , 2000 .

[63]  E. M. Cancello,et al.  New fossil termite species: Dolichorhinotermes dominicanus from Dominican amber (Isoptera, Rhinotermitidae, Rhinotermitinae). , 2000 .

[64]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[65]  P. Grandcolas Systématique phylogénétique de la sous-famille des Tryonicinae (Dictyoptera, Blattaria, Blattidae) , 1997 .

[66]  K. Klass external male genitalia and phylogeny of Blattaria and Mantodea , 1997 .

[67]  Philippe Grandcolas,et al.  The phylogeny of cockroach families: a cladistic appraisal of morpho-anatomical data , 1996 .

[68]  Xavier Martínez-Delclós Blástidos (Insecta,Blattodea) del Cretácico Inferior de España. Familia Mesoblattinidae, Blattulidae y Poliphagidae , 1993 .

[69]  Louis M Ruth The genus Tryonicus Shaw from Australia and New Caledonia (Dictyoptera: Blattaria: Blattidae: Tryonicinae) , 1987 .

[70]  E. Jarzembowski An early Cretaceous termite from southern England (Isoptera: Hodotermitidae) , 1981 .

[71]  S. Asahina Taxonomic notes on non-domiciliary Periplaneta species from the Ryukyus, Taiwan, Hong Kong and Thailand , 1980 .

[72]  L. Roth,et al.  Neotropical Cockroaches of the Epilampra abdomennigrum Complex; a Clarification of Their Systematics (Dictyoptera, Blattaria) , 1969 .

[73]  L. Roth The Evolution of Male Tergal Glands in the Blattaria , 1969 .

[74]  Ashley B. Gurney,et al.  Evolutionary Studies of Cockroaches , 1965 .

[75]  Annals and Magazine of Natural History , 1952, Nature.

[76]  C. Bruijning Studies on Malayan Blattidae , 1948 .

[77]  G. B. D.Sc. XXIV.—On some new or interesting Asiatic Blattodea , 1938 .

[78]  M. B.,et al.  A Synonymic Catalogue of Orthoptera , 1905, Nature.