A Framework for Inference Using Goodness of Fit Tests Based on Ensemble of Phi-Divergences

In this paper we study the inferential use of goodness of fit tests in a non-parametric setting. The utility of such tests will be demonstrated for the test case of spectrum sensing applications in cognitive radios. We provide the first comprehensive framework for decision fusion of an ensemble of goodness-of-fit testing procedures through an Ensemble Goodness-of-Fit test. Also, we introduce a generalized family of functionals and kernels called Φ-divergences which allow us to formulate goodness-of-fit tests that are parameterized by a single parameter. The performance of these tests is simulated under Gaussian and non-Gaussian noise in a MIMO setting. We show that under uncertainty in the noise statistics or non-Gaussianity in the noise, the performance of non-parametric tests in general, and phi-divergence based goodness-of-fit tests in particular, is significantly superior to that of the energy detector with reduced implementation complexity. In particular, the false alarm rates of our proposed tests is maintained at a fixed level over a wide variation in the channel noise distributions. Additionally, we describe a collaborative spatially separated version of the test for robust combining of tests in a distributed spectrum sensing setting and quantify the significant collaboration gains achieved.

[1]  Yonghong Zeng,et al.  A Review on Spectrum Sensing for Cognitive Radio: Challenges and Solutions , 2010, EURASIP J. Adv. Signal Process..

[2]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[3]  Luis F. Chaparro,et al.  Fuzzy Morphological Polynomial Image Representation , 2010, EURASIP J. Adv. Signal Process..

[4]  Ahmad R. Sharafat,et al.  Signed-rank nonparametric multiuser detection in non-Gaussian channels , 2005, IEEE Transactions on Information Theory.

[5]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[6]  John E. Angus,et al.  The Probability Integral Transform and Related Results , 1994, SIAM Rev..

[7]  Rafe M. J. Donahue,et al.  A Note on Information Seldom Reported via the P Value , 1999 .

[8]  J. Wellner,et al.  GOODNESS-OF-FIT TESTS VIA PHI-DIVERGENCES , 2006, math/0603238.

[9]  Ahmed H. Tewfik,et al.  ProTOMAC: Proactive Transmit Opportunity Detection at the MAC Layer for Cognitive Radios , 2010, 2010 IEEE International Conference on Communications.

[10]  Hüseyin Arslan,et al.  A survey of spectrum sensing algorithms for cognitive radio applications , 2009, IEEE Communications Surveys & Tutorials.

[11]  Pramod K. Varshney,et al.  Noise Enhanced Nonparametric Detection , 2009, IEEE Transactions on Information Theory.

[12]  Nikhil Kundargi,et al.  A nonparametric sequential kolmogorov-smirnov test for transmit opportunity detection at the MAC layer , 2009, 2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications.

[13]  Ahmed H. Tewfik,et al.  Inference using phi-divergence Goodness-of-Fit tests , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[14]  Raul H. C. Lopes,et al.  A two-dimensional Kolmogorov-Smirnov test , 2009 .

[15]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[16]  Yonghong Zeng,et al.  Eigenvalue-based spectrum sensing algorithms for cognitive radio , 2008, IEEE Transactions on Communications.

[17]  D. Heisey,et al.  The Abuse of Power , 2001 .

[18]  Lawrence Leemis,et al.  Order statistics in goodness-of-fit testing , 2001, IEEE Trans. Reliab..

[19]  Marc Noe,et al.  The Calculation of Distributions of Two-Sided Kolmogorov-Smirnov Type Statistics , 1972 .

[20]  G. Fasano,et al.  A multidimensional version of the Kolmogorov–Smirnov test , 1987 .

[21]  Nikhil Kundargi,et al.  A novel parallelized goodness-of-Fit test based Dynamic Spectrum access technique for Cognitive Radio Networks , 2010, 2010 4th International Symposium on Communications, Control and Signal Processing (ISCCSP).

[22]  Visa Koivunen,et al.  Robust Nonparametric Cyclic Correlation-Based Spectrum Sensing for Cognitive Radio , 2010, IEEE Transactions on Signal Processing.

[23]  Kapil Gulati,et al.  Performance bounds of MIMO receivers in the presence of radio frequency interference , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[24]  S. Metchev,et al.  A two‐dimensional Kolmogorov–Smirnov test for crowded field source detection: ROSAT sources in NGC 6397 , 2002, astro-ph/0204391.

[25]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[26]  Ju Liu,et al.  Fast and Robust Spectrum Sensing via Kolmogorov-Smirnov Test , 2010, IEEE Transactions on Communications.

[27]  David Middleton,et al.  Non-Gaussian Noise Models in Signal Processing for Telecommunications: New Methods and Results for Class A and Class B Noise Models , 1999, IEEE Trans. Inf. Theory.

[28]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[29]  Stewart D. Hodges,et al.  An evaluation of tests of distributional forecasts , 2003 .

[30]  M. Schervish P Values: What They are and What They are Not , 1996 .

[31]  Dina Katabi,et al.  Learning to share: narrowband-friendly wideband networks , 2008, SIGCOMM '08.

[32]  E. Samuel-Cahn,et al.  P Values as Random Variables—Expected P Values , 1999 .

[33]  D. Donoho,et al.  Higher criticism for detecting sparse heterogeneous mixtures , 2004, math/0410072.

[34]  Saleem A. Kassam,et al.  A bibliography on nonparametric detection , 1980, IEEE Trans. Inf. Theory.

[35]  Haiquan Wang,et al.  Spectrum sensing in cognitive radio using goodness of fit testing , 2009, IEEE Transactions on Wireless Communications.

[36]  Moeness G. Amin,et al.  Performance Analysis of GPS Receivers in Non-Gaussian Noise Incorporating Precorrelation Filter and Sampling Rate , 2008, IEEE Transactions on Signal Processing.