A marginalised particle filter for bearings-only tracking

A marginalised particle filter (PF) for bearings-only tracking in modified polar coordinates (MPC) is developed. Using an Euler approximation to the dynamical equation it is shown that the range can be marginalised out so that only the three remaining elements of the state vector need to be sampled in the PF. The marginalised PF in MPC is shown to significantly outperform existing PFs for BOT in a numerical example.

[1]  V. Aidala,et al.  Utilization of modified polar coordinates for bearings-only tracking , 1983 .

[2]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[3]  Fredrik Gustafsson,et al.  Recursive Bayesian estimation: bearings-only applications , 2005 .

[4]  R. Vinter,et al.  Shifted Rayleigh filter: a new algorithm for bearings-only tracking , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[6]  N. Peach,et al.  Bearings-only tracking using a set of range-parameterised extended Kalman filters , 1995 .

[7]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[8]  Mark R. Morelande,et al.  Optimal posterior density approximation for bearings-only tracking , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[9]  Alfonso Farina,et al.  Target tracking with bearings - Only measurements , 1999, Signal Process..

[10]  Mark R. Morelande,et al.  An analysis of the single sensor bearings-only tracking problem , 2008, 2008 11th International Conference on Information Fusion.

[11]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[12]  T. Brehard,et al.  Hierarchical particle filter for bearings-only tracking , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[14]  Y. Ho,et al.  A Bayesian approach to problems in stochastic estimation and control , 1964 .

[15]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[16]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .