Supramolecular organization of thylakoid membrane proteins in green plants.

The light reactions of photosynthesis in green plants are mediated by four large protein complexes, embedded in the thylakoid membrane of the chloroplast. Photosystem I (PSI) and Photosystem II (PSII) are both organized into large supercomplexes with variable amounts of membrane-bound peripheral antenna complexes. PSI consists of a monomeric core complex with single copies of four different LHCI proteins and has binding sites for additional LHCI and/or LHCII complexes. PSII supercomplexes are dimeric and contain usually two to four copies of trimeric LHCII complexes. These supercomplexes have a further tendency to associate into megacomplexes or into crystalline domains, of which several types have been characterized. Together with the specific lipid composition, the structural features of the main protein complexes of the thylakoid membranes form the main trigger for the segregation of PSII and LHCII from PSI and ATPase into stacked grana membranes. We suggest that the margins, the strongly folded regions of the membranes that connect the grana, are essentially protein-free, and that protein-protein interactions in the lumen also determine the shape of the grana. We also discuss which mechanisms determine the stacking of the thylakoid membranes and how the supramolecular organization of the pigment-protein complexes in the thylakoid membrane and their flexibility may play roles in various regulatory mechanisms of green plant photosynthesis.

[1]  R. Herrmann,et al.  Protein assembly of photosystem II and accumulation of subcomplexes in the absence of low molecular mass subunits PsbL and PsbJ. , 2003, European journal of biochemistry.

[2]  J. Barber,et al.  Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Celia Miller,et al.  Surface charges, the heterogeneous lateral distribution of the two photosystems, and thylakoid stacking * , 1991 .

[4]  H. Scheller,et al.  The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis , 2000, Nature.

[5]  M. Vink,et al.  Light affects the accessibility of the thylakoid light harvesting complex II (LHCII) phosphorylation site to the membrane protein kinase(s). , 2003, Biochemistry.

[6]  J. Barber,et al.  Time-resolved absorption and emission show that the CP43' antenna ring of iron-stressed synechocystis sp. PCC6803 is efficiently coupled to the photosystem I reaction center core. , 2003, Biochemistry.

[7]  S. D’haene,et al.  Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. , 2004, Biochemistry.

[8]  D. Simpson Freeze-fracture studies on barley plastid membranes II. Wild-type chloroplast , 1978 .

[9]  E. Boekema,et al.  Conformational changes in photosystem II supercomplexes upon removal of extrinsic subunits. , 2000, Biochemistry.

[10]  T. Bricker,et al.  The structure and function of CP47 and CP43 in Photosystem II , 2004, Photosynthesis Research.

[11]  A. Young,et al.  Determination of the Stoichiometry and Strength of Binding of Xanthophylls to the Photosystem II Light Harvesting Complexes* , 1999, The Journal of Biological Chemistry.

[12]  C. Külheim,et al.  Rapid Regulation of Light Harvesting and Plant Fitness in the Field , 2002, Science.

[13]  Zhenfeng Liu,et al.  Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution , 2004, Nature.

[14]  G. Nicolson STRUCTURE OF THE PHOTOSYNTHETIC APPARATUS IN PROTEIN-EMBEDDED CHLOROPLASTS , 1971, The Journal of cell biology.

[15]  E. Baena-González,et al.  Biogenesis, assembly and turnover of photosystem II units. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  S. Styring,et al.  Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. , 2004, Biochimica et biophysica acta.

[17]  P. Albertsson,et al.  The constant proportion of grana and stroma lamellae in plant chloroplasts. , 2004, Physiologia plantarum.

[18]  P. Joliot,et al.  Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves. , 2004, Biochimica et biophysica acta.

[19]  J. Barber,et al.  Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem , 2003, Nature.

[20]  W. Schröder,et al.  The Low Molecular Mass PsbW Protein Is Involved in the Stabilization of the Dimeric Photosystem II Complex in Arabidopsis thaliana * , 2000, The Journal of Biological Chemistry.

[21]  R. Bassi,et al.  Chromophore organization in the higher-plant photosystem II antenna protein CP26. , 2002, Biochemistry.

[22]  James Barber,et al.  Architecture of the Photosynthetic Oxygen-Evolving Center , 2004, Science.

[23]  E. Boekema,et al.  Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. , 1999, European journal of biochemistry.

[24]  J. Rochaix,et al.  Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii , 2002, EMBO reports.

[25]  I. Nir,et al.  Chloroplast organization and the ultrastructural localization of photosystems I and II. , 1973, Journal of ultrastructure research.

[26]  H. Galla,et al.  Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone. , 2002, Biochemistry.

[27]  H. Scheller,et al.  Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana. , 2001, European journal of biochemistry.

[28]  E. Pichersky,et al.  Mutation Val235Ala weakens binding of the 33-kDa manganese stabilizing protein of photosystem II to one of two sites. , 1997, Biochemistry.

[29]  S. Scheuring,et al.  High‐resolution AFM topographs of Rubrivivax gelatinosus light‐harvesting complex LH2 , 2001, The EMBO journal.

[30]  E. Boekema,et al.  Characterization of trimeric Photosystem I particles from the prochlorophyte Prochlorothrix hollandica by electron microscopy and image analysis , 1993 .

[31]  F. Wollman,et al.  Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[32]  K. Miller,et al.  The light-harvesting chlorpohyll-protein complex of photosystem II. Its location in the photosynthetic membrane , 1976, The Journal of cell biology.

[33]  T. Kieselbach,et al.  The proteome of the chloroplast lumen of higher plants , 2004, Photosynthesis Research.

[34]  E. Boekema,et al.  Localization of cyanobacterial photosystem II donor-side subunits by electron microscopy and the supramolecular organization ofphotosystem II in the thylakoid membrane. , 1999, European journal of biochemistry.

[35]  P. Horton,et al.  Activation of Zeaxanthin Is an Obligatory Event in the Regulation of Photosynthetic Light Harvesting* , 2002, The Journal of Biological Chemistry.

[36]  T. Morosinotto,et al.  The Nature of a Chlorophyll Ligand in Lhca Proteins Determines the Far Red Fluorescence Emission Typical of Photosystem I* , 2003, Journal of Biological Chemistry.

[37]  H. Schägger Respiratory chain supercomplexes of mitochondria and bacteria. , 2002, Biochimica et biophysica acta.

[38]  E. Stauber,et al.  Proteomics of Chlamydomonas reinhardtii Light-Harvesting Proteins , 2003, Eukaryotic Cell.

[39]  F. Wollman State transitions reveal the dynamics and flexibility of the photosynthetic apparatus , 2001, The EMBO journal.

[40]  A. Scherz,et al.  From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes , 2002, The EMBO journal.

[41]  L. Staehelin,et al.  Lateral Distribution of the Cytochrome b(6)/f and Coupling Factor ATP Synthetase Complexes of Chloroplast Thylakoid Membranes. , 1985, Plant physiology.

[42]  B. D. Kohorn,et al.  Disruption of Thylakoid-associated Kinase 1 Leads to Alteration of Light Harvesting in Arabidopsis * , 2001, The Journal of Biological Chemistry.

[43]  S. Murakami Structural and Functional Organization of the Thylakoid Membrane System in Photosynthetic Apparatus , 1992 .

[44]  P. Horton,et al.  Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II - effects on photosynthesis, grana stacking and fitness. , 2003, The Plant journal : for cell and molecular biology.

[45]  P. Gustafsson,et al.  The properties of the chlorophyll a/b-binding proteins Lhca2 and Lhca3 studied in vivo using antisense inhibition. , 2001, Plant physiology.

[46]  E. Boekema,et al.  Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts. , 2000, Journal of molecular biology.

[47]  J. Bouchaud,et al.  Plastoquinone compartmentation in chloroplasts. II. Theoretical aspects , 1992 .

[48]  P. Quinn,et al.  Factors influencing PS II particle array formation in Arabidopsis thaliana chloroplasts and the relationship of such arrays to the thermostability of PS II , 1995 .

[49]  Elena G. Andrizhiyevskaya,et al.  On the role of the CP47 core antenna in the energy transfer and trapping dynamics of Photosystem II , 2004 .

[50]  J. Barber,et al.  Too much of a good thing: light can be bad for photosynthesis. , 1992, Trends in biochemical sciences.

[51]  E. Boekema,et al.  Plants lacking the main light-harvesting complex retain photosystem II macro-organization , 2003, Nature.

[52]  L. Staehelin,et al.  Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyll b-deficient CD3 mutant of wheat , 1988, The Journal of cell biology.

[53]  G. Schmidt,et al.  In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: heterodimerization is required for antenna pigment organization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. van Grondelle,et al.  Spectroscopic properties of PSI-IsiA supercomplexes from the cyanobacterium Synechococcus PCC 7942. , 2002, Biochimica et biophysica acta.

[55]  H. Scheller,et al.  Pigment organization and energy transfer dynamics in isolated photosystem I (PSI) complexes from Arabidopsis thaliana depleted of the PSI-G, PSI-K, PSI-L, or PSI-N subunit. , 2002, Biophysical journal.

[56]  Z. Šesták PS2001 Proceedings, 12th International Congress on Photosynthesis , 2002, Photosynthetica (Praha).

[57]  H. Scheller,et al.  Role of subunits in eukaryotic Photosystem I. , 2001, Biochimica et biophysica acta.

[58]  W. Saenger,et al.  The assembly of protein subunits and cofactors in photosystem I. , 2002, Current opinion in structural biology.

[59]  William W. Parson,et al.  Light-Harvesting Antennas in Photosynthesis , 2003, Advances in Photosynthesis and Respiration.

[60]  E. Pohl,et al.  The Structure of the Chloroplast F1-ATPase at 3.2 Å Resolution* , 2001, The Journal of Biological Chemistry.

[61]  G. Peter,et al.  Biochemical Evidence that the Higher Plant Photosystem II Core Complex is Organized as a Dimer , 1991 .

[62]  Hans-Peter Braun,et al.  New Insights into the Respiratory Chain of Plant Mitochondria. Supercomplexes and a Unique Composition of Complex II1 , 2003, Plant Physiology.

[63]  C. Funk,et al.  Novel approach reveals localisation and assembly pathway of the PsbS and PsbW proteins into the photosystem II dimer , 2002, FEBS letters.

[64]  E. Boekema,et al.  Electron microscopic structural analysis of Photosystem I, Photosystem II, and the cytochromeb6/f complex from green plants and cyanobacteria , 1994, Journal of bioenergetics and biomembranes.

[65]  Henning Stahlberg,et al.  Structural biology: Proton-powered turbine of a plant motor , 2000, Nature.

[66]  J. Rupprecht,et al.  Identification of N- and C-terminal amino acids of Lhca1 and Lhca4 required for formation of the heterodimeric peripheral photosystem I antenna LHCI-730. , 2002, Biochemistry.

[67]  P. Tittmann,et al.  Surface analysis of the photosystem I complex by electron and atomic force microscopy. , 1998, Journal of molecular biology.

[68]  T. A. Link,et al.  Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. , 1998, Science.

[69]  J. Barber,et al.  Exploring the ability of chlorophyll b to bind to the CP43′ protein induced under iron deprivation in a mutant of Synechocystis PCC 6803 containing the cao gene , 2003, FEBS letters.

[70]  N. Kamiya,et al.  The orientations of core antenna chlorophylls in photosystem II are optimized to maximize the quantum yield of photosynthesis , 2004, FEBS letters.

[71]  J. Barber,et al.  Three-dimensional structure of Chlamydomonas reinhardtii and Synechococcus elongatus photosystem II complexes allows for comparison of their oxygen-evolving complex organization. , 2000, The Journal of biological chemistry.

[72]  R. Herrmann,et al.  The Chloroplast Gene ycf9 Encodes a Photosystem II (PSII) Core Subunit, PsbZ, That Participates in PSII Supramolecular Architecture , 2001, The Plant Cell Online.

[73]  Yoshinori Fujiyoshi,et al.  Atomic Model of Plant Light‐Harvesting Complex by Electron Crystallography. , 1994 .

[74]  L. Staehelin,et al.  Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes , 2004, Photosynthesis Research.

[75]  P. Steponkus,et al.  Alterations in Chloroplast Thylakoids during Cold Acclimation. , 1976, Plant physiology.

[76]  B. D. Kohorn,et al.  TAKs, Thylakoid Membrane Protein Kinases Associated with Energy Transduction* , 1999, The Journal of Biological Chemistry.

[77]  D. Latowski,et al.  Violaxanthin de-epoxidase, the xanthophyll cycle enzyme, requires lipid inverted hexagonal structures for its activity. , 2004, Biochemistry.

[78]  R. Strasser,et al.  Violaxanthin de-epoxidase in etiolated leaves , 2004, Photosynthesis Research.

[79]  C. Külheim,et al.  Is Each Light-Harvesting Complex Protein Important for Plant Fitness?1[w] , 2004, Plant Physiology.

[80]  K. Tokuyasu Membranes as observed in frozen sections. , 1976, Journal of ultrastructure research.

[81]  G. Semenova PARTICLE REGULARITY ON THYLAKOID FRACTURE FACES IS INFLUENCED BY STORAGE CONDITIONS , 1995 .

[82]  J. Barber,et al.  Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[83]  E. Boekema,et al.  Photosystem II solubilizes as a monomer by mild detergent treatment of unstacked thylakoid membranes* , 2004, Photosynthesis Research.

[84]  B. Demmig‐Adams,et al.  The role of xanthophyll cycle carotenoids in the protection of photosynthesis , 1996 .

[85]  C. Wilhelm,et al.  Why do thylakoid membranes from higher plants form grana stacks? , 1993, Trends in biochemical sciences.

[86]  J. Barber,et al.  Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria , 2001, Nature.

[87]  John F. Allen,et al.  State Transitions--a Question of Balance , 2003, Science.

[88]  E. Stauber,et al.  Comparison of the subunit compositions of the PSI-LHCI supercomplex and the LHCI in the green alga Chlamydomonas reinhardtii. , 2004, Biochemistry.

[89]  B. Bohrmann,et al.  Ultrastructure of spinach chloroplasts as revealed by freeze-substitution , 1990 .

[90]  R. Bock,et al.  A Small Chloroplast-Encoded Protein as a Novel Architectural Component of the Light-Harvesting Antenna , 2000, The Journal of cell biology.

[91]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[92]  P. Horton,et al.  REGULATION OF LIGHT HARVESTING IN GREEN PLANTS. , 1996, Annual review of plant physiology and plant molecular biology.

[93]  M. Cottam,et al.  Segregation of the photosystems in thylakoids depends on their size. , 2003, Biochimica et biophysica acta.

[94]  J. Barber Influence of Surface Charges on Thylakoid Structure and Function , 1982 .

[95]  Fabrice Rappaport,et al.  Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. , 2002, Annual review of plant biology.

[96]  M. Heel,et al.  3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis , 2000, Nature Structural Biology.

[97]  R. Bassi,et al.  Three-dimensional structure of the higher-plant photosystem II reaction centre and evidence for its dimeric organization in vivo. , 1994, European journal of biochemistry.

[98]  Nathan Nelson,et al.  Crystal structure of plant photosystem I , 2003, Nature.

[99]  J. Barber Photosystem II: a multisubunit membrane protein that oxidises water. , 2002, Current opinion in structural biology.

[100]  Thomas Schmidt,et al.  Simultaneous atomic-force and two-photon fluorescence imaging of biological specimens in vivo. , 2004, Ultramicroscopy.

[101]  K. Pfeiffer,et al.  Yeast mitochondrial F1F0‐ATP synthase exists as a dimer: identification of three dimer‐specific subunits , 1998, The EMBO journal.

[102]  M. Seibert,et al.  Structural, biochemical and biophysical characterization of four oxygen-evolving photosystem II preparations from spinach , 1984 .

[103]  E. Boekema,et al.  A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria , 2001, Nature.

[104]  O. Vallon,et al.  Structural organization of the thylakoid membrane: freeze-fracture and immunocytochemical analysis. , 1991, Journal of electron microscopy technique.

[105]  C. Yocum,et al.  A highly resolved, oxygen‐evolving photosystem II preparation from spinach thylakoid membranes , 1981 .

[106]  B. Green,et al.  The Nuclear-encoded Chlorophyll-binding Photosystem II-S Protein Is Stable in the Absence of Pigments (*) , 1995, The Journal of Biological Chemistry.

[107]  R. Jennings,et al.  Fluorescence decay and spectral evolution in intact photosystem I of higher plants. , 2000, Biochemistry.

[108]  J. Barber,et al.  Three-dimensional Reconstruction of a Light-harvesting Complex I- Photosystem I (LHCI-PSI) Supercomplex from the Green Alga Chlamydomonas reinhardtii , 2003, The Journal of Biological Chemistry.

[109]  C. Yocum,et al.  N-terminal truncations of manganese stabilizing protein identify two amino acid sequences required for binding of the eukaryotic protein to photosystem II and reveal the absence of one binding-related sequence in cyanobacteria. , 2002, Biochemistry.

[110]  H. Scheller,et al.  Balance of power: a view of the mechanism of photosynthetic state transitions. , 2001, Trends in plant science.

[111]  S. Jansson,et al.  A guide to the Lhc genes and their relatives in Arabidopsis/IT> , 1999, Trends in Plant Science.

[112]  P. Chitnis,et al.  PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803 , 1993, FEBS letters.

[113]  R. Higashi,et al.  Violaxanthin de-epoxidase. Lipid composition and substrate specificity. , 1978, Archives of biochemistry and biophysics.

[114]  J. Barber,et al.  Oxyphotobacteria: Antenna ring around photosystem I , 2001, Nature.

[115]  W. Kühlbrandt,et al.  Determination of the aggregate size in detergent solution of the light-harvesting chlorophyll a/b-protein complex from chloroplast membranes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[116]  C. Sundby,et al.  A model for the topology of the chloroplast thylakoid membrane , 1999 .

[117]  J. Allen,et al.  Protein phosphorylation in regulation of photosynthesis. , 1992, Biochimica et biophysica acta.

[118]  E. Boekema,et al.  Specific association of photosystem II and light‐harvesting complex II in partially solubilized photosystem II membranes , 1998, FEBS letters.

[119]  L. Bumba,et al.  Electron microscopy in structural studies of Photosystem II , 2004, Photosynthesis Research.

[120]  J. Lavergne,et al.  Plastoquinone compartmentation in chloroplasts. I. Evidence for domains with different rates of photo-reduction , 1992 .

[121]  R. van Grondelle,et al.  Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII. , 2001, Biophysical journal.

[122]  R. Debus The polypeptides of photosystem II and their influence on manganotyrosyl-based oxygen evolution. , 2000, Metal ions in biological systems.

[123]  Gyozo Garab,et al.  Granum revisited. A three-dimensional model--where things fall into place. , 2003, Trends in plant science.

[124]  D. Cugini,et al.  Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[125]  A. Holzenburg,et al.  Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[126]  V. Sundström,et al.  Energy transfer and trapping in photosynthesis , 1994 .

[127]  G. Peter,et al.  Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. , 1991, The Journal of biological chemistry.

[128]  E. Boekema,et al.  Photosystem I trimers from Synechocystis PCC 6803 lacking the PsaF and PsaJ subunits bind an IsiA ring of 17 units. , 2003, Biochimica et biophysica acta.

[129]  E. Bergantino,et al.  Light- and pH-dependent structural changes in the PsbS subunit of photosystem II , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[130]  W. Chow,et al.  Structural and functional dynamics of plant photosystem II. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[131]  R. Bassi,et al.  Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. , 1998, Biochimica et biophysica acta.

[132]  P. Joliot,et al.  Cyclic electron transfer in plant leaf , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[133]  L. Packer,et al.  PROTONATION AND CHLOROPLAST MEMBRANE STRUCTURE , 1970, The Journal of cell biology.

[134]  D. Branton,et al.  Subunits in chloroplast lamellae. , 1967, Journal of ultrastructure research.

[135]  J. Barber,et al.  Stabilization of photosystem two dimers by phosphorylation: Implication for the regulation of the turnover of D1 protein , 1997, FEBS letters.

[136]  H. Scheller,et al.  Green plant photosystem I binds light-harvesting complex I on one side of the complex. , 2001, Biochemistry.

[137]  S. Forsén,et al.  Phosphorylation Controls the Three-dimensional Structure of Plant Light Harvesting Complex II* , 1997, The Journal of Biological Chemistry.

[138]  J. Breton,et al.  Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes , 1989, Photosynthesis Research.

[139]  R. van Grondelle,et al.  Energy transfer and trapping in photosystem I. , 2001, Biochimica et biophysica acta.

[140]  W. Schröder,et al.  A Nuclear-encoded Subunit of the Photosystem II Reaction Center (*) , 1995, The Journal of Biological Chemistry.

[141]  Graham R Fleming,et al.  Toward an understanding of the mechanism of nonphotochemical quenching in green plants. , 2004, Biochemistry.

[142]  A. Holzenburg,et al.  Structural analysis of photosystem II in far-red-light-adapted thylakoid membranes. New crystal forms provide evidence for a dynamic reorganization of light-harvesting antennae subunits. , 2000, European journal of biochemistry.

[143]  Stefan Jansson,et al.  A pigment-binding protein essential for regulation of photosynthetic light harvesting , 2000, Nature.

[144]  Tsuyoshi Endo,et al.  Cyclic electron flow around photosystem I is essential for photosynthesis , 2004, Nature.

[145]  J. Rochaix Assembly,function, and dynamics of the photosynthetic machinery in Chlamydomonas reinhardtii. , 2001, Plant physiology.

[146]  J. Anderson,et al.  Photoregulation of the Composition, Function, and Structure of Thylakoid Membranes , 1986 .

[147]  R. Bassi,et al.  Nearest-neighbor analysis of a photosystem II complex from Marchantia polymorpha L. (liverwort), which contains reaction center and antenna proteins. , 1998, European journal of biochemistry.

[148]  P. Horton Hypothesis: Are grana necessary for regulation of light harvesting? , 1999 .

[149]  S. Jansson The light-harvesting chlorophyll a/b-binding proteins. , 1994, Biochimica et biophysica acta.

[150]  B. Green,et al.  Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation , 1994, Nature.

[151]  R. Aebersold,et al.  Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[152]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[153]  E. Boekema,et al.  Solubilization of green plant thylakoid membranes with n-dodecyl-α,D-maltoside. Implications for the structural organization of the Photosystem II, Photosystem I, ATP synthase and cytochrome b6 f complexes , 2004, Photosynthesis Research.

[154]  F. Wollman,et al.  The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1 , 1999, Biochimica et biophysica acta.

[155]  P Albertsson,et al.  A quantitative model of the domain structure of the photosynthetic membrane. , 2001, Trends in plant science.

[156]  H. Scheller,et al.  Nearest-Neighbor Analysis of Higher-Plant Photosystem I Holocomplex , 1996, Plant physiology.

[157]  K. Michel,et al.  Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: The function of IdiA and IsiA. , 2004, Physiologia plantarum.

[158]  P. Horton,et al.  Antisense Inhibition of the Photosynthetic Antenna Proteins CP29 and CP26: Implications for the Mechanism of Protective Energy Dissipation , 2001, Plant Cell.

[159]  U. Chatterjee,et al.  Effect of unconventional feeds on production cost, growth performance and expression of quantitative genes in growing pigs , 2022, Journal of the Indonesian Tropical Animal Agriculture.

[160]  E. Boekema,et al.  Supramolecular organization of photosystem I and light‐harvesting complex I in Chlamydomonas reinhardtii , 2002, FEBS letters.

[161]  P. Fromme,et al.  Structure of photosystem I. , 2001, Biochimica et biophysica acta.

[162]  F. Wollman,et al.  Studies on the cytochrome b6/f complex. II. Localization of the complex in the thylakoid membranes from spinach and Chlamydomonas reinhardtii by immunocytochemistry and freeze-fracture analysis of b6/f mutants , 1986 .

[163]  E. Morris,et al.  Phosphatidylglycerol Is Involved in the Dimerization of Photosystem II* , 2000, The Journal of Biological Chemistry.

[164]  J. Barber,et al.  University of Groningen Structure and membrane organization of photosystem II in green plants , 2006 .

[165]  A. Mant,et al.  PSI‐O, a new 10‐kDa subunit of eukaryotic photosystem I , 2002, FEBS letters.

[166]  J. Barber,et al.  Localization of the 23-kDa subunit of the oxygen-evolving complex of photosystem II by electron microscopy. , 1998, European journal of biochemistry.

[167]  L. Staehelin Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro , 1976, The Journal of cell biology.

[168]  R. van Grondelle,et al.  Primary charge separation in Photosystem II , 2004, Photosynthesis Research.

[169]  Nobuo Kamiya,et al.  Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[170]  R. van Grondelle,et al.  Energy transfer and trapping in the Photosystem I complex of Synechococcus PCC 7942 and in its supercomplex with IsiA. , 2004, Biochimica et biophysica acta.

[171]  P. Fyfe,et al.  Reaction centres: the structure and evolution of biological solar power. , 2002, Trends in biochemical sciences.

[172]  E. Boekema,et al.  Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. , 1999, Biochemistry.

[173]  Jan M. Anderson Distribution of the cytochromes of spinach chloroplasts between the appressed membranes of grana stacks and stroma‐exposed thylakoid regions , 1982 .

[174]  S. Satoh,et al.  Chlorophyll b inhibits the formation of photosystem I trimer in Synechocystis sp. PCC6803 , 2002, FEBS letters.

[175]  H. Scheller,et al.  Light-harvesting Complex II Binds to Several Small Subunits of Photosystem I* , 2004, Journal of Biological Chemistry.

[176]  H. Scheller,et al.  The PSI-O Subunit of Plant Photosystem I Is Involved in Balancing the Excitation Pressure between the Two Photosystems* , 2004, Journal of Biological Chemistry.

[177]  R. Bassi,et al.  Biochemical Properties of the PsbS Subunit of Photosystem II Either Purified from Chloroplast or Recombinant* , 2002, The Journal of Biological Chemistry.

[178]  Genji Kurisu,et al.  Structure of the Cytochrome b6f Complex of Oxygenic Photosynthesis: Tuning the Cavity , 2003, Science.

[179]  J. Whitelegge,et al.  Ferredoxin:NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b6f complex. , 2001, The Journal of biological chemistry.

[180]  F. Wollman,et al.  Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii , 1996 .

[181]  W. Schröder,et al.  The low molecular mass subunits of the photosynthetic supracomplex, photosystem II. , 2004, Biochimica et biophysica acta.

[182]  Miller Kr,et al.  Chloroplast membrane organization at the supramolecular level and its functional implications. , 1976 .

[183]  Petra Fromme,et al.  Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution , 2001, Nature.

[184]  Mark Aspinall-O’Dea,et al.  In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[185]  O. Vallon,et al.  Synthesis, assembly and degradation of thylakoid membrane proteins. , 2000, Biochimie.

[186]  D. Murphy The molecular organisation of the photosynthetic membranes of higher plants , 1986 .

[187]  E. Boekema,et al.  The A‐type ATP synthase subunit K of Methanopyrus kandleri is deduced from its sequence to form a monomeric rotor comprising 13 hairpin domains , 2003, FEBS letters.

[188]  J. Rochaix,et al.  Characterization of chlorophyll a/b proteins of photosystem I from Chlamydomonas reinhardtii. , 1992, The Journal of biological chemistry.

[189]  T. G. Owens,et al.  Excited-state dynamics in photosystem II: Insights from the x-ray crystal structure , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[190]  J. Barber,et al.  Subunit positioning and transmembrane helix organisation in the core dimer of photosystem II , 2001, FEBS letters.

[191]  J. Barber,et al.  Supermolecular structure of photosystem II and location of the PsbS protein. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[192]  M. Schilstra,et al.  Relationship between excitation energy transfer, trapping, and antenna size in photosystem II. , 2001, Biochemistry.

[193]  J. Breton,et al.  Primary electrogenic reactions of Photosystem II as probed by the light-gradient method , 1987 .

[194]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[195]  Lisa Rosgaard,et al.  Photosystem I Activity Is Increased in the Absence of the PSI-G Subunit* , 2002, The Journal of Biological Chemistry.

[196]  J. Anderson,et al.  Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. , 1980, Biochimica et biophysica acta.

[197]  J. Barber,et al.  Isolation of a highly active PSII‐LHCII supercomplex from thylakoid membranes by a direct method , 1999, FEBS letters.

[198]  T. Morosinotto,et al.  The Lhca antenna complexes of higher plants photosystem I. , 2002, Biochimica et biophysica acta.

[199]  Lisa Rosgaard,et al.  Molecular dissection of photosystem I in higher plants: topology, structure and function , 2003 .

[200]  H. Teramoto,et al.  Identification of Lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. , 2001, Plant & cell physiology.

[201]  M. van Heel,et al.  Evidence for a trimeric organization of the photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. , 1987 .

[202]  Nathan Nelson,et al.  Evolution of photosystem I – from symmetry through pseudosymmetry to asymmetry , 2004, FEBS letters.

[203]  M. Hippler,et al.  Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii. , 2001, The Plant journal : for cell and molecular biology.

[204]  Roswitha Harrer Associations between light-harvesting complexes and Photosystem II from Marchantia polymorpha L. determined by two- and three-dimensional electron microscopy , 2004, Photosynthesis Research.

[205]  A. Holzenburg,et al.  An alternative model for photosystem II/light harvesting complex II in grana membranes based on cryo-electron microscopy studies. , 2002, European journal of biochemistry.

[206]  K. Niyogi,et al.  Regulation of Photosynthetic Light Harvesting Involves Intrathylakoid Lumen pH Sensing by the PsbS Protein* , 2004, Journal of Biological Chemistry.

[207]  E. Boekema,et al.  The structure of photosystem II in Arabidopsis: localization of the CP26 and CP29 antenna complexes. , 2003, Biochemistry.

[208]  J. Barber,et al.  Structural analysis of the photosystem I supercomplex of cyanobacteria induced by iron deficiency. , 2003, Biochemistry.

[209]  D. Wettstein,et al.  Freeze-fracture studies on barley plastid membranes: VIII. In viridis-115, a mutant completely lacking Photosystem II, oxygen evolution enhancer 1 (OEE1) and the α-subunit of cytochrome b-559 accumulate in appressed thylakoids , 1989 .

[210]  Cees Otto,et al.  The native architecture of a photosynthetic membrane , 2004, Nature.

[211]  J. Barber,et al.  Isolation and Characterization of Monomeric and Dimeric CP47-Reaction Center Photosystem II Complexes* , 1998, The Journal of Biological Chemistry.

[212]  Lothar Jänsch,et al.  Proteomic approach to characterize the supramolecular organization of photosystems in higher plants. , 2004, Phytochemistry.

[213]  Sergio Marco,et al.  Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[214]  John F. Allen,et al.  Cytochrome b6f: structure for signalling and vectorial metabolism. , 2004, Trends in plant science.

[215]  Petra Fromme,et al.  Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution , 2001, Nature.

[216]  J. Barber,et al.  Isolation and biochemical characterisation of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organisation of photosystem II in vivo. , 1997, European journal of biochemistry.

[217]  P. Fromme,et al.  Functional implications on the mechanism of the function of photosystem II including water oxidation based on the structure of photosystem II. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[218]  E. Orlova,et al.  Localisation of the PsbH subunit in photosystem II: a new approach using labelling of His-tags with a Ni(2+)-NTA gold cluster and single particle analysis. , 2001, Journal of molecular biology.

[219]  J. Mudd,et al.  Lipid fixation during preparation of chloroplasts for electron microscopy. , 1968, Journal of lipid research.

[220]  L. H. Grimme,et al.  Chlorina and viridis mutants of barley (Hordeum vulgare L.) allow assignment of long‐wavelength chlorophyll forms to individual Lhca proteins of photosystem I in vivo , 1998, FEBS letters.

[221]  H. Scheller,et al.  The PSI-K Subunit of Photosystem I Is Involved in the Interaction between Light-harvesting Complex I and the Photosystem I Reaction Center Core* , 2000, Journal of Biological Chemistry.

[222]  W. Vermaas,et al.  Chlorophyll b can serve as the major pigment in functional photosystem II complexes of cyanobacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[223]  J F Allen,et al.  Molecular recognition in thylakoid structure and function. , 2001, Trends in plant science.

[224]  S. Horstmann,et al.  Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. , 2000, Biochimica et biophysica acta.

[225]  G. Farquhar,et al.  Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. , 2003, Biochimica et biophysica acta.

[226]  E. Boekema,et al.  Refined purification and further characterization of oxygen-evolving and Tris-treated Photosystem II particles from the thermophilic Cyanobacterium synechococcus sp. , 1988 .

[227]  R. Bassi,et al.  A supramolecular light-harvesting complex from chloroplast photosystem-II membranes. , 1992, European journal of biochemistry.

[228]  A S Frangakis,et al.  Cryo-electron tomography of neurospora mitochondria. , 2000, Journal of structural biology.

[229]  D. Klug,et al.  A quantitative structure–function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[230]  B. Böttcher,et al.  The structure of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. determined by electron microscopy of two-dimensional crystals. , 1992, Biochimica et biophysica acta.

[231]  J. Dekker,et al.  Heptameric association of light‐harvesting complex II trimers in partially solubilized photosystem II membranes , 1999, FEBS letters.

[232]  P. Albertsson Interaction between the lumenal sides of the thylakoid membrane , 1982 .

[233]  J. Rochaix,et al.  Role of Chloroplast Protein Kinase Stt7 in LHCII Phosphorylation and State Transition in Chlamydomonas , 2003, Science.

[234]  Donald R. Ort,et al.  Oxygenic Photosynthesis: The Light Reactions , 1996, Advances in Photosynthesis and Respiration.

[235]  J. Popot,et al.  An atypical haem in the cytochrome b6f complex , 2003, Nature.

[236]  E. Boekema,et al.  Structural Organization of the Major Subunits in Cyanobacterial Photosystem 1 , 1997, The Journal of Biological Chemistry.