Zinc diffusion in n‐type indium phosphide

Profiles of Zn in n‐type InP〈100〉 wafers after ampoule diffusion were measured by secondary‐ion mass spectrometry, Auger electron spectrometry, differential Hall‐effect measurements, capacitance measurements, and scanning electron microscopy. The results can be explained by an interstitial‐substitutional mechanism, in which Zn diffuses as a singly ionized interstitial and is incorporated in the In sublattice as an electrically active substitutional acceptor or as an electrically inactive complex. At Zn concentrations lower than the background donor concentration the profile is cut off, as interstitial diffusion breaks down. The acceptor solubility increases with background donor concentration. Activation energies for diffusion and solubility were found to be 1.40 and 1.0 eV, respectively.

[1]  H. Serreze,et al.  Zn diffusion in InP: effect of substrate dopant concentration , 1986 .

[2]  A. Benninghoven,et al.  Secondary Ion Mass Spectrometry SIMS V , 1986 .

[3]  M. Gauneau,et al.  Further evidence of chromium, manganese, iron, and zinc redistribution in indium phosphide after annealing , 1985 .

[4]  R. Kaumanns,et al.  A new open diffusion technique using evaporated Zn3P2and its application to a lateral p-n-p transistor , 1984, IEEE Transactions on Electron Devices.

[5]  K. Kaźmierski,et al.  The Temperature-Dependent Diffusion Mechanism of Zn in InP Using the Semiclosed Diffusion Method , 1984 .

[6]  K. Heime,et al.  Diffusion in III-V semiconductors from spin-on-film sources , 1984 .

[7]  Y. Matsumoto Diffusion of Cd and Zn into InP and InGaAsP (Eg=0.95-1.35 eV) , 1983 .

[8]  A. H. V. Ommen Examination of models for Zn diffusion in GaAs , 1983 .

[9]  M. Salvi,et al.  Diffusion of zinc into ion implanted iron doped indium phosphide , 1983 .

[10]  W. Bartels Characterization of thin layers on perfect crystals with a multipurpose high resolution x‐ray diffractometer , 1983 .

[11]  H. Ando,et al.  Low-temperature Zn- and Cd-diffusion profiles in InP and formation of guard ring in InP avalanche photodiodes , 1982, IEEE Transactions on Electron Devices.

[12]  O. Hildebrand Anomalous Impurity Diffusion in III–V Compounds: The Consequence of Self‐Induced Field Effects , 1982 .

[13]  S. Sarma,et al.  Study of the ideal-vacancy-induced neutral deep levels in III-V compound semiconductors and their ternary alloys , 1981 .

[14]  Ulrich Gösele,et al.  Diffusion of zinc in gallium arsenide: A new model , 1981 .

[15]  E. Kuphal Preparation and characterization of LPE InP , 1981 .

[16]  L. Henry,et al.  Open ampoule diffusion in InP , 1980 .

[17]  R. M. Redstall,et al.  Applications of Electrochemical Methods for Semiconductor Characterization I . Highly Reproducible Carrier Concentration Profiling of VPE “Hi‐Lo” , 1980 .

[18]  P. Tien,et al.  Diffusion of Cd acceptors in InP and a diffusion theory for III‐V semiconductors , 1979 .

[19]  B. Tuck,et al.  Electrical measurements on homogeneous diffused p-type InP , 1977 .

[20]  B. Tuck,et al.  Surface features on zinc-diffused indium phosphide , 1976 .

[21]  B. Tuck,et al.  Diffusion profiles of zinc in indium phosphide , 1975 .

[22]  D. Shaw Atomic diffusion in semiconductors , 1973 .

[23]  C. V. Opdorp The Concentration Gradient of Zn near a p‐n Junction in III–V Compounds , 1967 .

[24]  L. L. Chang,et al.  Diffusion and solubility of zinc in indium phosphide , 1964 .

[25]  C. S. Fuller,et al.  Chemical interactions among defects in germanium and silicon , 1956 .

[26]  C. Wagner Diffusion of Lead Chloride Dissolved in Solid Silver Chloride , 1950 .