Toward multicontrollable metasurfaces

Multicontrollability is just beginning to emerge as an engineering paradigm. It is necessary for fault-tolerant operation because multiple agents become available to perform a specific function. This built-in redundancy promotes seamless operation in variable conditions. Inspired by biological multicontrollability, multicontrollable metasurfaces have been conceptualized for terahertz applications. Comprising electrically small elements called MetaAtoms made of diverse pixels each of which is variously controlled, a metasurface could be either homogeneous or graded on the wavelength scale. As an example, terahertz transmission of a normally incident plane wave through a metasurface with subwavelength MetaAtoms containing diverse pixels of magnetostatically controllable material (InAs) and thermally controllable material (CdTe) was analyzed. The co-polarized transmission coefficients were found to exhibit stopbands that shift by switching on/off the magnetostatic field and/or increasing/decreasing the temperature.

[1]  Kebin Fan,et al.  Experimental realization of a terahertz all-dielectric metasurface absorber. , 2017, Optics express.

[2]  Keivan G. Stassun,et al.  Scintillation properties of semiconducting 6LiInSe2 crystals to ionizing radiation , 2015 .

[3]  A. Lakhtakia From bioinspired multifunctionality to mimumes , 2015, 1502.01937.

[4]  A. Zunger,et al.  The quest for dilute ferromagnetism in semiconductors: Guides and misguides by theory , 2010 .

[5]  Ranjan Singh,et al.  Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. , 2011, Optics letters.

[6]  Federico Capasso,et al.  Ultracompact metasurface in-line polarimeter , 2016 .

[7]  P. Bhattacharya,et al.  Defects in 6LiInSe2 neutron detector investigated by photo-induced current transient spectroscopy and photoluminescence , 2013 .

[8]  Sami Franssila,et al.  Introduction to Microfabrication: Franssila/Introduction to Microfabrication , 2010 .

[9]  Akhlesh Lakhtakia,et al.  Semiconductor split-ring resonators for thermally tunable terahertz metamaterials , 2008 .

[10]  Tadayui Takahashi,et al.  Recent progress in CdTe and CdZnTe detectors , 2001, astro-ph/0107398.

[11]  D. Novotny,et al.  Waveguides Composed of Metafilms/Metasurfaces: The Two-Dimensional Equivalent of Metamaterials , 2009, IEEE Antennas and Wireless Propagation Letters.

[12]  Akhlesh Lakhtakia,et al.  Enhancement of light absorption efficiency of amorphous-silicon thin-film tandem solar cell due to multiple surface-plasmon-polariton waves in the near-infrared spectral regime* , 2013 .

[13]  D. R. Chowdhury,et al.  Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. , 2011, Optics letters.

[14]  Tod V. Laurvick,et al.  Improved terahertz modulation using germanium telluride (GeTe) chalcogenide thin films , 2015 .

[15]  Thomas N. Jackson,et al.  Vertically integrated pixel microbolometers for IR imaging using high-resistivity VOx , 2013, Defense, Security, and Sensing.

[16]  Houtong Chen,et al.  A review of metasurfaces: physics and applications , 2016, Reports on progress in physics. Physical Society.

[17]  F. Dill Optical lithography , 1975, IEEE Transactions on Electron Devices.

[18]  Yu Jia,et al.  Dilute Magnetic Semiconductor and Half-Metal Behaviors in 3d Transition-Metal Doped Black and Blue Phosphorenes: A First-Principles Study , 2015, Nanoscale Research Letters.

[19]  D. Maystre,et al.  Selected papers on diffraction gratings , 1993 .

[20]  Dai‐Sik Kim,et al.  Terahertz-Triggered Phase Transition and Hysteresis Narrowing in a Nanoantenna Patterned Vanadium Dioxide Film. , 2015, Nano letters.

[21]  D. Wiesmann,et al.  Evolutionary Optimization Algorithms in Computational Optics , 1999 .

[22]  A. Lakhtakia,et al.  Nanotechnology: A Crash Course , 2010 .

[23]  Yunlong Cui,et al.  Lithium containing chalcogenide single crystals for neutron detection , 2014 .

[24]  S. Franssila Introduction to microfabrication , 2004 .

[25]  Hossein Mosallaei,et al.  Truly achromatic optical metasurfaces: a filter circuit theory-based design , 2015 .

[26]  R. Bell Review of optical applications of CdTe , 1977 .

[27]  Martin Koch,et al.  Terahertz metasurfaces with high Q-factors , 2011 .

[28]  Shi-Wei Qu,et al.  Controlling Dispersion Characteristics of Terahertz Metasurface , 2015, Scientific Reports.

[29]  Tom G. Mackay,et al.  Meet the Metamaterials , 2007 .

[30]  Qixian Peng,et al.  Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy , 2015 .

[31]  Markus Walther,et al.  Fundamental and second-order phonon processes in CdTe and ZnTe , 2001 .

[32]  Zongfu Yu,et al.  Nanodome solar cells with efficient light management and self-cleaning. , 2010, Nano letters.

[33]  Chennupati Jagadish,et al.  Electro-optical switching by liquid-crystal controlled metasurfaces. , 2013, Optics express.

[34]  Akhlesh Lakhtakia,et al.  Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability. , 2008, Optics express.

[35]  J. Patrick Fitch,et al.  An Engineering Introduction to Biotechnology , 2002 .

[36]  Akhlesh Lakhtakia,et al.  Engineered multifunctionality and environmental sustainability , 2015, Journal of Environmental Studies and Sciences.

[37]  Shengli Jia,et al.  Broadband metasurface for independent control of reflected amplitude and phase , 2016 .

[38]  C. Gu,et al.  The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region , 2008 .

[39]  Wei Shen,et al.  A novel dual-band terahertz metamaterial modulator , 2016 .

[40]  Magdy F. Iskander Electromagnetic Fields and Waves , 2000 .

[41]  E. Hack,et al.  Terahertz holography for imaging amplitude and phase objects. , 2014, Optics express.

[42]  Francesco Chiadini,et al.  Bicontrollable terahertz metasurface with subwavelength scattering elements of two different materials. , 2017, Applied optics.

[43]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[44]  R. Luebbers,et al.  The Finite Difference Time Domain Method for Electromagnetics , 1993 .

[45]  Single and cascaded, magnetically controllable metasurfaces as terahertz filters , 2016 .

[46]  O. Boyraz,et al.  Thin anisotropic metasurfaces for simultaneous light focusing and polarization manipulation , 2014, 1406.0860.

[47]  C. Su Thermal conductivity, electrical conductivity, and thermoelectric properties of CdTe and Cd0.8Zn0.2Te crystals between room temperature and 780oC , 2015 .

[48]  Akhlesh Lakhtakia,et al.  Mimumes for SUBTLE applications , 2014, Optics & Photonics - NanoScience + Engineering.

[49]  Arnold Burger,et al.  Bioinspired multicontrollable metasurfaces and metamaterials for terahertz applications , 2017, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[50]  A. Lakhtakia,et al.  Electromagnetic Surface Waves: A Modern Perspective , 2013 .

[51]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[52]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[53]  H. Morkoç,et al.  Zinc Oxide: Fundamentals, Materials and Device Technology , 2009 .

[54]  A. Lakhtakia,et al.  Characteristic Attributes of Multiple Cascaded Terahertz Metasurfaces with Magnetically Tunable Subwavelength Resonators , 2018 .