emote estimation of grassland gross primary production during xtreme meteorological seasons

[1]  Jan G. P. W. Clevers,et al.  Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3 , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[2]  Serge Rambal,et al.  Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements , 2013 .

[3]  Tommaso Julitta,et al.  Phenology and carbon dioxide source/sink strength of a subalpine grassland in response to an exceptionally short snow season , 2013 .

[4]  Anatoly A. Gitelson,et al.  Remote estimation of gross primary productivity in crops using MODIS 250m data , 2013 .

[5]  T. Meyers,et al.  Climate extremes and grassland potential productivity , 2012 .

[6]  Michele Meroni,et al.  Remote sensing-based estimation of gross primary production in a subalpine grassland , 2012 .

[7]  A. Gitelson,et al.  Remote estimation of crop gross primary production with Landsat data , 2012 .

[8]  Andrew E. Suyker,et al.  Estimating daily gross primary production of maize based only on MODIS WDRVI and shortwave radiation data , 2011 .

[9]  M. Rossini,et al.  Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake , 2011 .

[10]  G. Seiz,et al.  Inter-annual variations of snow days over Switzerland from 2000–2010 derived from MODIS satellite data , 2011 .

[11]  Rebecca N. Handcock,et al.  Ground-Based Optical Measurements at European Flux Sites: A Review of Methods, Instruments and Current Controversies , 2011, Sensors.

[12]  M. Rossini,et al.  The hyperspectral irradiometer, a new instrument for long-term and unattended field spectroscopy measurements. , 2011, The Review of scientific instruments.

[13]  S. Cogliati Development of automatic spectrometric systems for proximal sensing of photosynthetic activity of vegetation , 2011 .

[14]  Andrew E. Suyker,et al.  REMOTE ESTIMATION OF GROSS PRIMARY PRODUCTION IN MAIZE , 2011 .

[15]  Jadunandan Dash,et al.  The potential of the MERIS Terrestrial Chlorophyll Index for carbon flux estimation , 2010 .

[16]  M. Rossini,et al.  High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice field , 2010 .

[17]  F. Woodward,et al.  Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate , 2010, Science.

[18]  Stefano Bocchi,et al.  Fine-scale assessment of hay meadow productivity and plant diversity in the European Alps using field spectrometric data , 2010 .

[19]  Sonja Wipf,et al.  A review of snow manipulation experiments in Arctic and alpine tundra ecosystems , 2010 .

[20]  Michele Meroni,et al.  Indicators of ozone effects on Fagus sylvatica L. by means of spectroradiometric measurements , 2009 .

[21]  Wenjiang Huang,et al.  Remote estimation of gross primary production in wheat using chlorophyll-related vegetation indices , 2009 .

[22]  Shunlin Liang,et al.  Mapping incident photosynthetically active radiation from MODIS data over China , 2008 .

[23]  Hongliang Fang,et al.  Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data , 2006 .

[24]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[25]  A. Gitelson,et al.  Three‐band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves , 2006 .

[26]  A. Viña,et al.  Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity , 2006 .

[27]  M. Beniston Mountain Climates and Climatic Change: An Overview of Processes Focusing on the European Alps , 2005 .

[28]  J. Dash,et al.  The MERIS terrestrial chlorophyll index , 2004 .

[29]  G. Meehl,et al.  More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century , 2004, Science.

[30]  Alexei Lyapustin,et al.  Interpolation and Profile Correction (IPC) Method for Shortwave Radiative Transfer in Spectral Intervals of Gaseous Absorption , 2003 .

[31]  S. T. Gower,et al.  A cross‐biome comparison of daily light use efficiency for gross primary production , 2003 .

[32]  Yuri A. Gritz,et al.  Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. , 2003, Journal of plant physiology.

[33]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[34]  D. Sims,et al.  Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages , 2002 .

[35]  W. Oechel,et al.  Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species , 2002, Oecologia.

[36]  G. Meehl,et al.  Climate extremes: observations, modeling, and impacts. , 2000, Science.

[37]  R. Bligny,et al.  Divergent strategies of photoprotection in high-mountain plants , 1998, Planta.

[38]  Anatoly A. Gitelson,et al.  Why and What for the Leaves Are Yellow in Autumn? On the Interpretation of Optical Spectra of Senescing Leaves (Acerplatanoides L.)* , 1995 .

[39]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[40]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[41]  D. G. Watts,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[42]  J. Monteith Climate and the efficiency of crop production in Britain , 1977 .

[43]  J. Monteith SOLAR RADIATION AND PRODUCTIVITY IN TROPICAL ECOSYSTEMS , 1972 .