Fuzzy adaptation of crossover and mutation rates in genetic algorithms based on population performance

A novel approach for the adaptive tuning of recombination rates of genetic algorithm through a fuzzy inference system is proposed. The method exploits a set of features assessing the status of the optimization process and determined on the basis of the fitness of a representative subset of the population. This features, at each generation, are fed to a fuzzy system for adjusting the mutation and crossover rates of the genetic algorithm. The method has been tested on classical problems that are often used in literature for assessing optimization algorithms. The achieved results show that this procedure improves the performance of the optimization process, by both speeding up the search, and avoiding the genetic algorithm to converge toward local minima.

[1]  Marco Vannucci,et al.  Improving the Estimation of Mean Flow Stress within Hot Rolling of Steel by Means of Different Artificial Intelligence Techniques , 2013, MIM.

[2]  Thomas Bäck,et al.  The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.

[3]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[4]  Marco Vannucci,et al.  Novel classification method for sensitive problems and uneven datasets based on neural networks and fuzzy logic , 2011, Appl. Soft Comput..

[5]  X. Zeng A fuzzy logic based design for adaptive genetic algorithms , 1997 .

[6]  Thomas Bäck,et al.  Intelligent Mutation Rate Control in Canonical Genetic Algorithms , 1996, ISMIS.

[7]  Peter Vamplew,et al.  Accelerating Real-Valued Genetic Algorithms Using Mutation-with-Momentum , 2005, Australian Conference on Artificial Intelligence.

[8]  D. Thierens Adaptive mutation rate control schemes in genetic algorithms , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[9]  Dilip Kumar Pratihar,et al.  Hierarchical adaptive neuro-fuzzy inference systems trained by evolutionary algorithms to model plasma spray coating process , 2013, J. Intell. Fuzzy Syst..

[10]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  Hideyuki Takagi,et al.  A Framework for Studying the Effects of Dynamic Crossover, Mutation, and Population Sizing in Genetic Algorithms , 1994, IEEE/Nagoya-University World Wisepersons Workshop.

[12]  Heinz Mühlenbein,et al.  How Genetic Algorithms Really Work: Mutation and Hillclimbing , 1992, PPSN.

[13]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[14]  Dilip Kumar Pratihar,et al.  Adaptive neuro-fuzzy expert systems for predicting specific energy consumption and energy stability margin in crab walking of six-legged robots , 2013, J. Intell. Fuzzy Syst..

[15]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[16]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[17]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[18]  Marco Vannucci,et al.  Model Parameters Optimisation for an Industrial Application: A Comparison between Traditional Approaches and Genetic Algorithms , 2008, 2008 Second UKSIM European Symposium on Computer Modeling and Simulation.

[19]  A. Tamhane,et al.  Multiple Comparison Procedures , 2009 .

[20]  G. Syswerda,et al.  Schedule Optimization Using Genetic Algorithms , 1991 .

[21]  Douglas A. Wolfe,et al.  Nonparametric Statistical Methods , 1973 .

[22]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[23]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[24]  Terence C. Fogarty,et al.  Varying the Probability of Mutation in the Genetic Algorithm , 1989, ICGA.

[25]  Francisco Herrera,et al.  Genetic Algorithms and Soft Computing , 1996 .

[26]  Russell C. Eberhart,et al.  Implementation of evolutionary fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[27]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[28]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[29]  Mohammad Jalali Varnamkhasti,et al.  A hybrid of adaptive neuro-fuzzy inference system and genetic algorithm , 2013, J. Intell. Fuzzy Syst..

[30]  Bryant A. Julstrom,et al.  What Have You Done for Me Lately? Adapting Operator Probabilities in a Steady-State Genetic Algorithm , 1995, ICGA.

[31]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[32]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[33]  Mohamed S. Kamel,et al.  An information theoretic approach to generating fuzzy hypercubes for if-then classifiers , 2011, J. Intell. Fuzzy Syst..

[34]  John E. Angus,et al.  Optimal mutation probability for genetic algorithms , 1995 .

[35]  Li Ming,et al.  Genetic algorithm with dual species , 2008, 2008 IEEE International Conference on Automation and Logistics.

[36]  Hisashi Shimodaira,et al.  A new genetic algorithm using large mutation rates and population-elitist selection (GALME) , 1996, Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence.

[37]  Reinhard Männer,et al.  Towards an Optimal Mutation Probability for Genetic Algorithms , 1990, PPSN.

[38]  Francisco Herrera,et al.  Fuzzy adaptive genetic algorithms: design, taxonomy, and future directions , 2003, Soft Comput..

[39]  J. F. Baldwin Fuzzy logic and fuzzy reasoning , 1979 .

[40]  Thomas Bäck,et al.  Optimal Mutation Rates in Genetic Search , 1993, ICGA.

[41]  Francisco Herrera,et al.  Adaptive genetic operators based on coevolution with fuzzy behaviors , 2001, IEEE Trans. Evol. Comput..

[42]  Hideyuki Takagi,et al.  Dynamic Control of Genetic Algorithms Using Fuzzy Logic Techniques , 1993, ICGA.

[43]  D. Wolfe,et al.  Nonparametric Statistical Methods. , 1974 .