Protecting Earth-orbiting spacecraft against micro-meteoroid/orbital debris impact damage using composite structural systems and materials: An overview

[1]  William P. Schonberg,et al.  Hypervelocity Impact Response of Honeycomb Sandwich Panels , 2010 .

[2]  William P. Schonberg,et al.  Predicting the Perforation Response of Honeycomb Sandwich Panels Using Ballistic Limit Equations , 2009 .

[3]  Shannon Ryan,et al.  Numerical Simulation in Micrometeoroid and Orbital Debris Risk Assessment , 2009 .

[4]  Alessandro Francesconi,et al.  Analysis of transient vibrations on complex targets representing elementary configurations of GOCE satellite , 2008 .

[5]  Shannon Ryan,et al.  Hypervelocity impact on CFRP: Testing, material modelling, and numerical simulation , 2008 .

[6]  C. Puillet,et al.  Hypervelocity impact on honeycomb target structures: Experiments and modeling , 2008 .

[7]  Masayuki Anyoji,et al.  HVI tests on CFRP laminates at low temperature , 2008 .

[8]  Yo-Han Yoo,et al.  Simulation of high speed impact into ceramic composite systems using cohesive-law fracture model , 2008 .

[9]  Eitan Grossman,et al.  Response of composite materials to hypervelocity impact , 2008 .

[10]  M. Lambert,et al.  Ballistic limit equation for equipment placed behind satellite structure walls , 2008 .

[11]  Alessandro Francesconi,et al.  Application of Wavelet Transform to analyze acceleration signals generated by HVI on thin aluminum plates and all-aluminum honeycomb sandwich panels , 2008 .

[12]  Eric P. Fahrenthold,et al.  Hypervelocity impact simulation using membrane particle-elements , 2008 .

[13]  Robin Putzar,et al.  Vulnerability of spacecraft harnesses to hypervelocity impacts , 2008 .

[14]  Shannon Ryan,et al.  Characterizing the transient response of CFRP/Al HC spacecraft structures induced by space debris impact at hypervelocity , 2008 .

[15]  F. Angrilli,et al.  Generation of transient vibrations on aluminum honeycomb sandwich panels subjected to hypervelocity impacts , 2008 .

[16]  F. Angrilli,et al.  SPH evaluation of out-of-plane peak force transmitted during a hypervelocity impact , 2008 .

[17]  J. Vergniaud,et al.  Structural vibrations induced by HVI - application to the Gaia spacecraft , 2008 .

[18]  Shannon Ryan,et al.  A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures , 2008 .

[19]  Eitan Grossman,et al.  Residual stress effect on degradation of polyimide under simulated hypervelocity space debris and atomic oxygen , 2007 .

[20]  Richard A. Clegg,et al.  Hypervelocity impact damage prediction in composites: Part I—material model and characterisation , 2006 .

[21]  Werner Riedel,et al.  Numerical simulation of hypervelocity impact on CFRP/Al HC SP spacecraft structures causing penetration and fragment ejection , 2006 .

[22]  Richard A. Clegg,et al.  Hypervelocity impact damage prediction in composites: Part II—experimental investigations and simulations , 2006 .

[23]  Alessandro Francesconi,et al.  Acceleration fields induced by hypervelocity impacts on spacecraft structures , 2006 .

[24]  Toshihiko Shimizu,et al.  Hypervelocity Planar Plate Impact Experiments of Aramid Fiber-reinforced Plastics , 2006 .

[25]  Mica Grujicic,et al.  Hypervelocity impact resistance of reinforced carbon–carbon/carbon–foam thermal protection systems , 2006 .

[26]  Ryo Ito,et al.  Ballistic Limits of Gr/Ep and Hybrid Composite Rear Walls Protected by a Debris Shield , 2006 .

[27]  Hideki Tamura,et al.  Quantitative analysis of debris clouds from SiC-fiber-reinforced silicon nitride bumpers , 2005 .

[28]  Robin Putzar,et al.  Vulnerability of Shielded Fuel Pipes and Heat Pipes to Hypervelocity Impacts , 2005 .

[29]  Werner Riedel,et al.  Hypervelocity Impact Testing of Cfrp/al Honeycomb Satellite Structures , 2005 .

[30]  Yi Li,et al.  Energy-absorption performance of porous materials in sandwich composites under hypervelocity impact loading , 2004 .

[31]  Mi-Ock Lee,et al.  Hypervelocity impact into oblique ceramic/metal composite systems , 2003 .

[32]  Richard A. Clegg,et al.  Numerical Simulation and Experimental Charcterisation of Direct Hypervelocity Impact on a Spacecraft Hybrid Carbon Fibre/Kevlar Composite Structure , 2003 .

[33]  Shigeru Itoh,et al.  High velocity impact of thick composites , 2003 .

[34]  Richard A. Clegg,et al.  Hypervelocity Impact On Spacecraft Honeycomb: Hydrocode Simulation And Damage Laws , 2003 .

[35]  Paolo Colombo,et al.  Effect of Hypervelocity Impact on Microcellular Ceramic Foams from a Preceramic Polymer , 2003 .

[36]  Rade Vignjevic,et al.  Cost effective honeycomb and multi-layer insulation debris shields for unmanned spacecraft , 2001 .

[37]  Frank Schäfer,et al.  Impact damage on sandwich panels and multi-layer insulation , 2001 .

[38]  Justin H. Kerr,et al.  Projectile density, impact angle and energy effects on hypervelocity impact damage to carbon fibre/peek composites , 2001 .

[39]  Stephen R Reid,et al.  Impact behaviour of fibre-reinforced composite materials and structures , 2000 .

[40]  R. Tennyson,et al.  Hypervelocity impact damage to composites , 2000 .

[41]  R C Tennyson,et al.  9 – High-velocity impact damage to polymer matrix composites , 2000 .

[42]  Emma A. Taylor,et al.  Hypervelocity impact on carbon fibre reinforced plastic / aluminium honeycomb: Comparison with whipple bumper shields , 1999 .

[43]  I. V. Yakovlev,et al.  An investigation of ceramic/aluminium composites as shields for hypervelocity impacts , 1999 .

[44]  Emma A. Taylor,et al.  Normal and oblique hypervelocity impacts on carbon fibre/peek composites , 1999 .

[45]  William P. Schonberg,et al.  Protecting spacecraft against meteoroid/orbital debris impact damage: an overview , 1999 .

[46]  I. V. Yakovlev,et al.  Protective properties of shields of ceramic/aluminum composite for hypervelocity impact , 1999 .

[47]  William P. Schonberg,et al.  Effect of Multi-wall System Composition on Survivability for Spacecraft Impacted by Orbital Debris , 1999 .

[48]  Noboru Kikuchi,et al.  Constitutive modeling of polymeric foam material subjected to dynamic crash loading , 1998 .

[49]  Roberto Destefanis,et al.  Testing of advanced materials for high resistance debris shielding , 1997 .

[50]  Justin H. Kerr,et al.  Projectile shape effects on shielding performance at 7 km/s and 11 km/s , 1997 .

[51]  William P. Schonberg,et al.  Empirical hole size and crack length models for dual-wall systems under hypervelocity projectile impact , 1997 .

[52]  M. Lambert,et al.  Hypervelocity impacts and damage laws , 1997 .

[53]  R C Tennyson,et al.  HYPERVELOCITY IMPACT TESTS ON COMPOSITE BOOM STRUCTURES FOR SPACE ROBOT APPLICATIONS , 1997 .

[54]  M. Blosser Development of Metallic Thermal Protection Systems for the Reusable Launch Vehicle , 1996 .

[55]  Henry K. Nahra,et al.  Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells , 1996 .

[56]  C. Miglionico,et al.  A new technique for ground simulation of hypervelocity debris , 1995 .

[57]  N. N. Gorshkov,et al.  HYPERVELOCITY IMPACT ON LAMINATE COMPOSITE PANELS , 1995 .

[58]  Eric L. Christiansen,et al.  Enhanced meteoroid and orbital debris shielding , 1995 .

[59]  E. Schneider,et al.  Shielding against space debris. A comparison between different shields: The effect of materials on their performances , 1995 .

[60]  A. M. Nolen,et al.  An investigation of metal matrix composites as shields for hypervelocity orbital debris impacts , 1995 .

[61]  Mark J. Cintala,et al.  Multiple-mesh bumpers: A feasibility study , 1995 .

[62]  William P. Schonberg,et al.  Hypervelocity impact of dual-wall space structures with graphite/epoxy inner walls , 1994 .

[63]  M. Cintala,et al.  Impact experiments into multiple-mesh targets: Concept development of a lightweight collisional bumper , 1993 .

[64]  Andrew J. Piekutowski,et al.  Analysis of the UDRI tests on Nextel multi-shock shields , 1993 .

[65]  Eric L. Christiansen,et al.  Hypervelocity testing of advanced shielding concepts for spacecraft against impacts to 10 km/s , 1993 .

[66]  Eric L. Christiansen,et al.  Design and Performance Equations for Advanced Meteoroid and Debris Shields , 1993 .

[67]  Steven A. Scheer,et al.  Secondary debris impact damage and environment study , 1993 .

[68]  M. Johnson,et al.  Response of woven ceramic bumpers to hypervelocity impacts , 1993 .

[69]  Justin H. Kerr,et al.  Mesh double-bumper shield: A low-weight alternative for spacecraft meteoroid and orbital debris protection , 1993 .

[70]  R. C. Tennyson,et al.  Additional results on space environmental effects on polymer matrix composites: Experiment A0180 , 1992 .

[71]  R. C. Tennyson,et al.  Proposed test program and data base for LDEF polymer matrix composites , 1992 .

[72]  Miria Finckenor,et al.  Meteoroid/space debris impacts on MSFC LDEF experiments , 1991 .

[73]  William P. Schonberg,et al.  Use of composite materials in multi-wall structures to prevent perforation by hypervelocity particle impact , 1991 .

[74]  William P. Schonberg,et al.  Hypervelocity impact response of spaced composite material structures , 1990 .

[75]  Burton G. Cour-Palais,et al.  A multi-shock concept for spacecraft shielding , 1990 .

[76]  Burton G. Cour-Palais,et al.  Hypervelocity impact in metals, glass and composites , 1987 .

[77]  Ching H. Yew,et al.  A study of damage in composite panels produced by hypervelocity impact , 1987 .

[78]  Jerry G. Williams,et al.  High-Velocity-Impact Tests Conducted with Polyethylene Terephthalate Projectiles and Flexible Composite Wall Panels. , 1971 .

[79]  B. G. Cour-Palais,et al.  Meteoroid protection by multiwall structures. , 1969 .

[80]  R. E. Sennett,et al.  The effects of hypervelocity impact on honeycomb structures. , 1968 .

[81]  J. H. Diedrich,et al.  Hypervelocity impacts into stainless-steel tubes armored with reinforced beryllium , 1966 .

[82]  Jerry G. Williams,et al.  Structural and Materials Investigation of a 1/8-Scale-Model Space Structure of Toroidal Configuration and Filamentary Construction. , 1965 .