Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA.

[1]  M. Levitt,et al.  Structural Basis of Transcription: Backtracked RNA Polymerase II at 3.4 Angstrom Resolution , 2009, Science.

[2]  D. Gilmour,et al.  Promoter proximal pausing on genes in metazoans , 2009, Chromosoma.

[3]  K. Murakami Faculty Opinions recommendation of Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. , 2008 .

[4]  J. Strathern,et al.  Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. , 2008, Molecular cell.

[5]  Craig D. Kaplan,et al.  The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin. , 2008, Molecular cell.

[6]  Samuel H. Wilson,et al.  Structures of DNA polymerase beta with active-site mismatches suggest a transient abasic site intermediate during misincorporation. , 2008, Molecular cell.

[7]  John T. Lis,et al.  Transcription Regulation Through Promoter-Proximal Pausing of RNA Polymerase II , 2008, Science.

[8]  P. Cramer,et al.  Structure–function analysis of the RNA polymerase cleft loops elucidates initial transcription, DNA unwinding and RNA displacement , 2007, Nucleic acids research.

[9]  T. Kunkel,et al.  The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases , 2008, Cell Research.

[10]  P. Cramer,et al.  Functional Architecture of RNA Polymerase I , 2007, Cell.

[11]  Ruchir Shah,et al.  RNA polymerase is poised for activation across the genome , 2007, Nature Genetics.

[12]  P. Cramer,et al.  Mechanism of transcriptional stalling at cisplatin-damaged DNA , 2007, Nature Structural &Molecular Biology.

[13]  Robert Landick,et al.  A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. , 2007, Molecular cell.

[14]  R. Young,et al.  A Chromatin Landmark and Transcription Initiation at Most Promoters in Human Cells , 2007, Cell.

[15]  Tahir H. Tahirov,et al.  Structural basis for transcription elongation by bacterial RNA polymerase , 2007, Nature.

[16]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[17]  C. Carles,et al.  Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription , 2007, Proceedings of the National Academy of Sciences.

[18]  P. Cramer,et al.  CPD Damage Recognition by Transcribing RNA Polymerase II , 2007, Science.

[19]  Irina Artsimovitch,et al.  Structural basis for substrate loading in bacterial RNA polymerase , 2007, Nature.

[20]  R. Landick The regulatory roles and mechanism of transcriptional pausing. , 2006, Biochemical Society transactions.

[21]  Craig D. Kaplan,et al.  Structural Basis of Transcription: Role of the Trigger Loop in Substrate Specificity and Catalysis , 2006, Cell.

[22]  P. Cramer,et al.  Template misalignment in multisubunit RNA polymerases and transcription fidelity. , 2006, Molecular cell.

[23]  Yulia Yuzenkova,et al.  Transcript-Assisted Transcriptional Proofreading , 2006, Science.

[24]  P. Cramer,et al.  Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model. , 2006, Molecular cell.

[25]  Steven M. Block,et al.  Sequence-Resolved Detection of Pausing by Single RNA Polymerase Molecules , 2006, Cell.

[26]  H Toyokawa,et al.  The PILATUS 1M detector. , 2006, Journal of synchrotron radiation.

[27]  D. K. Hawley,et al.  RNA polymerase II subunit Rpb9 is important for transcriptional fidelity in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  P. Doetsch,et al.  RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? , 2006, Chemical reviews.

[29]  B. Schmitt,et al.  The PILATUS 1 M detector , 2006 .

[30]  Samuel H. Wilson,et al.  Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity. , 2005, Biochemistry.

[31]  Vasily M Studitsky,et al.  Nature of the nucleosomal barrier to RNA polymerase II. , 2005, Molecular cell.

[32]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Likelihood-enhanced Fast Translation Functions Biological Crystallography Likelihood-enhanced Fast Translation Functions , 2022 .

[33]  Anton Meinhart,et al.  Structures of Complete RNA Polymerase II and Its Subcomplex, Rpb4/7* , 2005, Journal of Biological Chemistry.

[34]  P. Cramer,et al.  Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. , 2004, Molecular cell.

[35]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[36]  Samuel H. Wilson,et al.  Structural insights into DNA polymerase beta deterrents for misincorporation support an induced-fit mechanism for fidelity. , 2004, Structure.

[37]  R. Landick,et al.  Downstream DNA selectively affects a paused conformation of human RNA polymerase II. , 2004, Journal of molecular biology.

[38]  H. Martinson,et al.  The Two Steps of Poly(A)-Dependent Termination, Pausing and Release, Can Be Uncoupled by Truncation of the RNA Polymerase II Carboxyl-Terminal Repeat Domain , 2004, Molecular and Cellular Biology.

[39]  T. Kunkel DNA Replication Fidelity* , 2004, Journal of Biological Chemistry.

[40]  Sean J. Johnson,et al.  Structures of Mismatch Replication Errors Observed in a DNA Polymerase , 2004, Cell.

[41]  Honggao Yan,et al.  Combinatorial Control of Human RNA Polymerase II (RNAP II) Pausing and Transcript Cleavage by Transcription Factor IIF, Hepatitis δ Antigen, and Stimulatory Factor II* , 2003, Journal of Biological Chemistry.

[42]  Elio A. Abbondanzieri,et al.  Ubiquitous Transcriptional Pausing Is Independent of RNA Polymerase Backtracking , 2003, Cell.

[43]  D. Erie,et al.  Downstream DNA Sequence Effects on Transcription Elongation , 2003, Journal of Biological Chemistry.

[44]  P. Cramer,et al.  Architecture of the RNA Polymerase II-TFIIS Complex and Implications for mRNA Cleavage , 2003, Cell.

[45]  M. Kashlev,et al.  Assays and affinity purification of biotinylated and nonbiotinylated forms of double-tagged core RNA polymerase II from Saccharomyces cerevisiae. , 2003, Methods in enzymology.

[46]  D. Erie The many conformational states of RNA polymerase elongation complexes and their roles in the regulation of transcription. , 2002, Biochimica et biophysica acta.

[47]  Nicholas D Bonawitz,et al.  Use of an in Vivo Reporter Assay to Test for Transcriptional and Translational Fidelity in Yeast* , 2002, The Journal of Biological Chemistry.

[48]  J. Lindsley Faculty Opinions recommendation of Yeast DNA polymerase eta utilizes an induced-fit mechanism of nucleotide incorporation. , 2002 .

[49]  L. Prakash,et al.  Yeast DNA Polymerase η Utilizes an Induced-Fit Mechanism of Nucleotide Incorporation , 2001, Cell.

[50]  R. Landick,et al.  Roles of RNA:DNA hybrid stability, RNA structure, and active site conformation in pausing by human RNA polymerase II. , 2001, Journal of molecular biology.

[51]  R. Landick,et al.  Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[52]  E. Kool,et al.  Importance of terminal base pair hydrogen-bonding in 3'-end proofreading by the Klenow fragment of DNA polymerase I. , 2000, Biochemistry.

[53]  E. Nudler,et al.  The mechanism of intrinsic transcription termination. , 1999, Molecular cell.

[54]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[55]  R. G. Keene,et al.  Transcriptional pausing at +62 of the HIV-1 nascent RNA modulates formation of the TAR RNA structure. , 1998, Molecular cell.

[56]  D. K. Hawley,et al.  Transcriptional Fidelity and Proofreading by RNA Polymerase II , 1998, Cell.

[57]  Samuel H. Wilson,et al.  Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. , 1997, Biochemistry.

[58]  M. Kashlev,et al.  RNA Polymerase Switches between Inactivated and Activated States By Translocating Back and Forth along the DNA and the RNA* , 1997, The Journal of Biological Chemistry.

[59]  C. Chan,et al.  Multiple interactions stabilize a single paused transcription intermediate in which hairpin to 3' end spacing distinguishes pause and termination pathways. , 1997, Journal of molecular biology.

[60]  E. Nudler,et al.  The RNA–DNA Hybrid Maintains the Register of Transcription by Preventing Backtracking of RNA Polymerase , 1997, Cell.

[61]  R. Landick RNA Polymerase Slides Home: Pause and Termination Site Recognition , 1997, Cell.

[62]  D. K. Hawley,et al.  Promoter Proximal Sequences Modulate RNA Polymerase II Elongation by a Novel Mechanism , 1996, Cell.

[63]  C. Chan,et al.  Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex , 1995, Cell.

[64]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[65]  P. V. von Hippel,et al.  Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. , 1993, Science.

[66]  D. Luse,et al.  SII-facilitated transcript cleavage in RNA polymerase II complexes stalled early after initiation occurs in primarily dinucleotide increments. , 1993, The Journal of biological chemistry.

[67]  C. M. Joyce,et al.  Reactions at the polymerase active site that contribute to the fidelity of Escherichia coli DNA polymerase I (Klenow fragment). , 1992, The Journal of biological chemistry.

[68]  K. Johnson,et al.  An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. , 1991, Biochemistry.

[69]  R. Landick,et al.  Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences. , 1990, The Journal of biological chemistry.

[70]  T. Kunkel,et al.  The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I. , 1990, The Journal of biological chemistry.

[71]  C. Levenson,et al.  Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. , 1990, Nucleic acids research.

[72]  M. Goodman,et al.  Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase. , 1990, The Journal of biological chemistry.

[73]  L. Loeb,et al.  Extension of mismatched 3' termini of DNA is a major determinant of the infidelity of human immunodeficiency virus type 1 reverse transcriptase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[74]  M. Boosalis,et al.  Nearest neighbor influences on DNA polymerase insertion fidelity. , 1989, The Journal of biological chemistry.

[75]  L. Loeb,et al.  Differential extension of 3' mispairs is a major contribution to the high fidelity of calf thymus DNA polymerase-alpha. , 1989, The Journal of biological chemistry.

[76]  S. Benkovic,et al.  Kinetic mechanism whereby DNA polymerase I (Klenow) replicates DNA with high fidelity. , 1988, Biochemistry.

[77]  M. Lai,et al.  Influence of DNA sequence on the nature of mispairing during DNA synthesis. , 1988, Biochemistry.

[78]  S. Benkovic,et al.  Kinetic mechanism of DNA polymerase I (Klenow). , 1987, Biochemistry.

[79]  S. Benkovic,et al.  Kinetic mechanism of DNA polymerase I , 1987 .