GEOMETRIC PROPERTIES OF INTEGRAL OPERATORS DEFINED BY BESSEL FUNCTIONS

In this paper, we find some sufficient conditions for integral operators defined by generalized Bessel functions to be starlike and uniformly convex. Conditions for Bessel, modified Bessel and Spherical Bessel functions are also a part of our investigations.

[1]  Erhan Deniz,et al.  Convexity of integral operators involving generalized Bessel functions , 2013 .

[2]  Hari M. Srivastava,et al.  Some Sufficient Conditions for Univalence of Certain Families of Integral Operators Involving Generalized Bessel Functions , 2011 .

[3]  Árpád Baricz,et al.  Generalized Bessel Functions of the First Kind , 2010 .

[4]  Basem A. Frasin,et al.  Univalence of integral operators involving Bessel functions , 2010, Appl. Math. Lett..

[5]  Saminathan Ponnusamy,et al.  Starlikeness and convexity of generalized Bessel functions , 2010 .

[6]  Á. Baricz Geometric properties of generalized Bessel functions , 2008, Publicationes Mathematicae Debrecen.

[7]  Árpád Baricz,et al.  Some inequalities involving generalized bessel functions , 2007 .

[8]  Árpád Baricz,et al.  Functional inequalities involving special functions , 2006 .

[9]  N. Shioji ON UNIFORMLY CONVEX FUNCTIONS AND UNIFORMLY SMOOTH FUNCTIONS , 1994 .

[10]  Muhammad Arif,et al.  SOME PROPERTIES OF AN INTEGRAL OPERATOR DEFINED BY BESSEL FUNCTIONS , 2011 .

[11]  B. A. Frasin,et al.  SUFFICIENT CONDITIONS FOR INTEGRAL OPERATOR DEFINED BY BESSEL FUNCTIONS , 2010 .

[12]  D. Breaz,et al.  The integral operator on the classes S_α^✻(b) and C_α(b) , 2008 .

[13]  Daniel Breaz,et al.  TWO INTEGRAL OPERATORS , 2002 .

[14]  V. Selinger Geometric properties of normalized Bessel functions , 1995 .

[15]  Sanford S. Miller,et al.  On some classes of first-order differential subordinations. , 1985 .