A Proposed Architecture Based on CNN for Feature Selection and Classification of Android Malwares

[1]  Altyeb Altaher,et al.  Classification of Android Malware Applications using Feature Selection and Classification Algorithms , 2016 .

[2]  Ponciano Jorge Escamilla-Ambrosio,et al.  Feature selection and ensemble of classifiers for Android malware detection , 2016, 2016 8th IEEE Latin-American Conference on Communications (LATINCOM).

[3]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[4]  Mohd Faizal Abdollah,et al.  Analysis of Features Selection and Machine Learning Classifier in Android Malware Detection , 2014, 2014 International Conference on Information Science & Applications (ICISA).

[5]  Tianqi Wang,et al.  An Android Malware Detection Method Based on Deep AutoEncoder , 2018, AICCC '18.

[6]  Tankut Acarman,et al.  Learning to detect Android malware via opcode sequences , 2020, Neurocomputing.

[7]  Abderrahim Ghadi,et al.  Detection and Classification of Malwares in Mobile Applications , 2017 .

[8]  Md. Anwar Hossain,et al.  Classification of Image using Convolutional Neural Network (CNN) , 2019, Global Journal of Computer Science and Technology.

[9]  Ausif Mahmood,et al.  A Framework for Designing the Architectures of Deep Convolutional Neural Networks , 2017, Entropy.

[10]  Tauseef Jamal,et al.  Deep Belief Networks Based Feature Generation and Regression for Predicting Wind Power , 2018, ArXiv.

[11]  Boudhir Anouar Abdelhakim,et al.  Permission based malware detection in android devices , 2018 .

[12]  Dafang Zhang,et al.  A Deep Learning Approach to Android Malware Feature Learning and Detection , 2016, 2016 IEEE Trustcom/BigDataSE/ISPA.

[13]  Boudhir Anouar Abdelhakim,et al.  Clustering Android Applications Using K-Means Algorithm Using Permissions , 2018 .