Spleen fibroblastic reticular cell-derived acetylcholine promotes lipid metabolism to drive autoreactive B cell responses.

[1]  M. Shlomchik,et al.  Glucose Requirement of Antigen-Specific Autoreactive B Cells and CD4+ T Cells. , 2023, Journal of immunology.

[2]  Y. Cho,et al.  Two circPPFIA1s negatively regulate liver metastasis of colon cancer via miR-155-5p/CDX1 and HuR/RAB36 , 2022, Molecular Cancer.

[3]  Jieli Chen,et al.  Carboxymethyl chitosan-assisted MnOx nanoparticles: Synthesis, characterization, detection and cartilage repair in early osteoarthritis. , 2022, Carbohydrate polymers.

[4]  L. Morel,et al.  Immunometabolic alterations in lupus: where do they come from and where do we go from there? , 2022, Current opinion in immunology.

[5]  Binfeng Chen,et al.  NAMPT is a metabolic checkpoint of IFNγ-producing CD4+ T cells in lupus nephritis. , 2022, Molecular therapy : the journal of the American Society of Gene Therapy.

[6]  Z. Vadasz,et al.  The role of B cell metabolism in autoimmune diseases. , 2022, Autoimmunity reviews.

[7]  P. Libby,et al.  B lymphocyte-derived acetylcholine limits steady-state and emergency hematopoiesis , 2022, Nature Immunology.

[8]  Mengyuan Li,et al.  Robust induction of B cell and T cell responses by a third dose of inactivated SARS-CoV-2 vaccine , 2022, Cell Discovery.

[9]  G. Robinson,et al.  Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies , 2022, The Journal of clinical investigation.

[10]  Scott N. Mueller,et al.  A diverse fibroblastic stromal cell landscape in the spleen directs tissue homeostasis and immunity , 2022, Science Immunology.

[11]  C. Reilly,et al.  Altered Germinal-Center Metabolism in B Cells in Autoimmunity. , 2022, Metabolites.

[12]  F. Di Palma,et al.  Free fatty-acid transport via CD36 drives β-oxidation-mediated hematopoietic stem cell response to infection , 2021, Nature Communications.

[13]  Binfeng Chen,et al.  CRAC Channel Controls the Differentiation of Pathogenic B Cells in Lupus Nephritis , 2021, Frontiers in Immunology.

[14]  D. Bredt,et al.  Nicotinic acetylcholine receptor redux: Discovery of accessories opens therapeutic vistas , 2021, Science.

[15]  D. Swerdlow,et al.  Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data , 2021, The Lancet.

[16]  Yichuan Hu,et al.  Sp1-mediated upregulation of Prdx6 expression prevents podocyte injury in diabetic nephropathy via mitigation of oxidative stress and ferroptosis. , 2021, Life sciences.

[17]  L. Tian,et al.  Succinyl-CoA Ligase Deficiency in Pro-inflammatory and Tissue-Invasive T Cells. , 2020, Cell metabolism.

[18]  Huiling Guo,et al.  CD36 facilitates fatty acid uptake by dynamic palmitoylation-regulated endocytosis , 2020, Nature Communications.

[19]  S. Feske,et al.  CRAC Channels and Calcium Signaling in T Cell-Mediated Immunity. , 2020, Trends in immunology.

[20]  S. Turley,et al.  Fibroblast‐derived IL‐33 is dispensable for lymph node homeostasis but critical for CD8 T‐cell responses to acute and chronic viral infection , 2020, European journal of immunology.

[21]  Wenzhi Sun,et al.  Brain control of humoral immune responses amenable to behavioural modulation , 2020, Nature.

[22]  Mengyuan Li,et al.  JAK/STAT signaling controls the fate of CD8+CD103+ tissue-resident memory T cell in lupus nephritis. , 2020, Journal of autoimmunity.

[23]  A. Sharabi,et al.  T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy , 2020, Nature Reviews Rheumatology.

[24]  M. Shlomchik,et al.  Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis , 2020, Nature Immunology.

[25]  Isabel R Schlaepfer,et al.  CPT1A-mediated fat oxidation, mechanisms and therapeutic potential. , 2020, Endocrinology.

[26]  J. Jellusova Metabolic control of B cell immune responses. , 2019, Current opinion in immunology.

[27]  T. Mak,et al.  Beyond neurotransmission: acetylcholine in immunity and inflammation , 2019, Journal of internal medicine.

[28]  H. Hsu,et al.  Autoreactive B cells in SLE, villains or innocent bystanders? , 2019, Immunological reviews.

[29]  W. Haining,et al.  Fibroblastic reticular cells enhance T cell metabolism and survival via epigenetic remodeling , 2019, Nature Immunology.

[30]  J. Cyster,et al.  B Cell Responses: Cell Interaction Dynamics and Decisions , 2019, Cell.

[31]  I. Sanz,et al.  Extrafollicular responses in humans and SLE , 2019, Immunological reviews.

[32]  S. Lewis,et al.  Structure and function of the immune system in the spleen , 2019, Science Immunology.

[33]  T. Mak,et al.  Choline acetyltransferase–expressing T cells are required to control chronic viral infection , 2019, Science.

[34]  K. Blenman,et al.  Immune Cell and Cell Cluster Phenotyping, Quantitation, and Visualization Using In Silico Multiplexed Images and Tissue Cytometry , 2018, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[35]  J. Xiong Fatty Acid Oxidation in Cell Fate Determination. , 2018, Trends in biochemical sciences.

[36]  S. Salek-Ardakani,et al.  Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells , 2018, Nature Communications.

[37]  M. Teitell,et al.  Initial B Cell Activation Induces Metabolic Reprogramming and Mitochondrial Remodeling , 2018, iScience.

[38]  I. Sanz,et al.  Understanding B‐cell activation and autoantibody repertoire selection in systemic lupus erythematosus: A B‐cell immunomics approach , 2018, Immunological reviews.

[39]  J. Skinner,et al.  Second signals rescue B cells from activation-induced mitochondrial dysfunction and death , 2018, Nature Immunology.

[40]  Russell E. Durrett,et al.  Plasma cell output from germinal centers is regulated by signals from Tfh and stromal cells , 2018, The Journal of experimental medicine.

[41]  Ming-hui Zhao,et al.  Redefining lupus nephritis: clinical implications of pathophysiologic subtypes , 2017, Nature Reviews Nephrology.

[42]  J. Woodgett,et al.  GSK3 is a metabolic checkpoint regulator in B cells , 2016, Nature Immunology.

[43]  S. Strack,et al.  Measuring Mitochondrial Shape with ImageJ , 2017 .

[44]  Ariel L. Raybuck,et al.  Germinal Center hypoxia and regulation of antibody qualities by a hypoxia response system , 2016, Nature.

[45]  R. Wanders,et al.  The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. , 2016, Annual review of physiology.

[46]  C. Gordon,et al.  Systemic lupus erythematosus , 2016, Nature Reviews Disease Primers.

[47]  Anne L. Fletcher,et al.  Lymph node fibroblastic reticular cells in health and disease , 2015, Nature Reviews Immunology.

[48]  Ivan V. Gregoretti,et al.  Diversity, cellular origin and autoreactivity of antibody-secreting cell expansions in acute Systemic Lupus Erythematosus , 2015, Nature Immunology.

[49]  B. Croker,et al.  Normalization of CD4+ T cell metabolism reverses lupus , 2015, Science Translational Medicine.

[50]  D. Mooney,et al.  The CLEC-2–podoplanin axis controls fibroblastic reticular cell contractility and lymph node microarchitecture , 2014, Nature Immunology.

[51]  Burkhard Ludewig,et al.  B cell homeostasis and follicle confines are governed by fibroblastic reticular cells , 2014, Nature Immunology.

[52]  O. Kuda,et al.  Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. , 2014, Annual review of nutrition.

[53]  N. Yang,et al.  P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. , 2013, Arthritis and rheumatism.

[54]  K. Lips,et al.  The Non-Neuronal Cholinergic System in Health and Disease , 2013, Pharmacology.

[55]  Jin-Young Choi,et al.  The pathogenesis of systemic lupus erythematosus-an update. , 2012, Current opinion in immunology.

[56]  S. Turley,et al.  Reproducible Isolation of Lymph Node Stromal Cells Reveals Site-Dependent Differences in Fibroblastic Reticular Cells , 2011, Front. Immun..

[57]  Andreas Radbruch,et al.  Long-lived autoreactive plasma cells drive persistent autoimmune inflammation , 2011, Nature Reviews Rheumatology.

[58]  I. Sanz,et al.  B cells as therapeutic targets in SLE , 2010, Nature Reviews Rheumatology.

[59]  M. Cook,et al.  Dysregulation of germinal centres in autoimmune disease , 2009, Nature Reviews Immunology.

[60]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[61]  M. Weisman,et al.  The B cell in systemic lupus erythaematosus: a rational target for more effective therapy , 2007, Annals of the rheumatic diseases.

[62]  Richard M. Eglen,et al.  Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development , 2007, Nature Reviews Drug Discovery.

[63]  M. Matsui,et al.  Diminished antigen-specific IgG1 and interleukin-6 production and acetylcholinesterase expression in combined M1 and M5 muscarinic acetylcholine receptor knockout mice , 2007, Journal of Neuroimmunology.

[64]  J. Changeux,et al.  The role of nicotinic receptors in B-lymphocyte development and activation. , 2007, Life sciences.

[65]  T. Chiles,et al.  Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. , 2006, Blood.

[66]  R. Mebius,et al.  Structure and function of the spleen , 2005, Nature Reviews Immunology.

[67]  S. Vesely,et al.  Splenectomy for adult patients with idiopathic thrombocytopenic purpura: a systematic review to assess long-term platelet count responses, prediction of response, and surgical complications. , 2004, Blood.

[68]  K. Kawashima,et al.  Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. , 2004, Frontiers in bioscience : a journal and virtual library.

[69]  T. Honjo,et al.  Separate domains of AID are required for somatic hypermutation and class-switch recombination , 2004, Nature Immunology.

[70]  P. Lipsky,et al.  Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. , 2003, The Journal of clinical investigation.

[71]  K. Calame,et al.  Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. , 2003, Immunity.

[72]  G. Kelsoe,et al.  Spontaneous formation of germinal centers in autoimmune mice , 2001, Journal of leukocyte biology.

[73]  K. Toellner,et al.  Intrinsic Constraint on Plasmablast Growth and Extrinsic Limits of Plasma Cell Survival , 2000, The Journal of experimental medicine.

[74]  D. Mevorach,et al.  Systemic Exposure to Irradiated Apoptotic Cells Induces Autoantibody Production , 1998, The Journal of experimental medicine.

[75]  M. Hochberg,et al.  Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. , 1997, Arthritis and rheumatism.

[76]  K. Tani,et al.  Quantitation of autoantibody-secreting B cells in systemic lupus erythematosus. , 1989, Autoimmunity.