PLGA implants for controlled drug release: Impact of the diameter.

[1]  J. Siepmann,et al.  Hot melt extruded PLGA implants loaded with ibuprofen: How heat exposure alters the physical drug state , 2022, Journal of Drug Delivery Science and Technology.

[2]  M. Martín-Pastor,et al.  Design, optimization, and in vitro characterization of idebenone-loaded PLGA microspheres for LHON treatment. , 2022, International journal of pharmaceutics.

[3]  W. Hinrichs,et al.  An overview of the production methods for core-shell microspheres for parenteral controlled drug delivery. , 2021, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[4]  Sarah A. Stewart,et al.  Poly(caprolactone)-based subcutaneous implant for sustained delivery of levothyroxine. , 2021, International journal of pharmaceutics.

[5]  A. Famili,et al.  Accelerated in vitro Release Testing Method for a Long-Acting Peptide-PLGA Formulation. , 2021, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[6]  P. Jirkof,et al.  Buprenorphine loaded PLGA microparticles: Characterization of a sustained-release formulation , 2021 .

[7]  J. Garcia,et al.  A new engineering process of biodegradable polymeric solid implants for ultra-long-acting drug delivery , 2020, International journal of pharmaceutics: X.

[8]  Yidan Wang,et al.  The effect of polymer blends on initial release regulation and in vitro-in vivo relationship of peptides loaded PLGA-Hydrogel Microspheres. , 2020, International journal of pharmaceutics.

[9]  R. Wagner,et al.  Silica particles incorporated into PLGA-based in situ-forming implants exploit the dual advantage of sustained release and particulate delivery. , 2020, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[10]  A. Lamprecht,et al.  Predictability of drug encapsulation and release from propylene carbonate/PLGA microparticles. , 2020, International journal of pharmaceutics.

[11]  J. Rantanen,et al.  Quality by Design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. , 2020, International journal of pharmaceutics.

[12]  D. Burgess,et al.  Flow-through cell-based In Vitro Release Method for Triamcinolone acetonide Poly (lactic-co-glycolic) acid Microspheres. , 2020, International journal of pharmaceutics.

[13]  J. Siepmann,et al.  Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: Diprophylline dispersions. , 2019, International journal of pharmaceutics.

[14]  Aiping Wang,et al.  Pore change during degradation of octreotide acetate-loaded PLGA microspheres: The effect of polymer blends. , 2019, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[15]  Jie Shen,et al.  Development of Level A in vitro-in vivo correlations for peptide loaded PLGA microspheres. , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[16]  J. Siepmann,et al.  Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants. , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[17]  K. Mäder,et al.  Polymer degradation induced drug precipitation in PLGA implants – Why less is sometimes more , 2019, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[18]  S. Plontke,et al.  Intracochlear PLGA based implants for dexamethasone release: Challenges and solutions , 2019, International journal of pharmaceutics: X.

[19]  J. Fisher,et al.  3D Printing Bioactive PLGA Scaffolds Using DMSO as a Removable Solvent. , 2018, Bioprinting.

[20]  Xing Tang,et al.  Effect of size on the in vitro / in vivo drug release and degradation of exenatide-loaded PLGA microspheres , 2018, Journal of Drug Delivery Science and Technology.

[21]  R. Bodmeier,et al.  Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin. , 2018, International journal of pharmaceutics.

[22]  P. Conaghan,et al.  Synovial and systemic pharmacokinetics (PK) of triamcinolone acetonide (TA) following intra-articular (IA) injection of an extended-release microsphere-based formulation (FX006) or standard crystalline suspension in patients with knee osteoarthritis (OA). , 2018, Osteoarthritis and cartilage.

[23]  W. Hennink,et al.  Effect of Particle Size on Drug Loading and Release Kinetics of Gefitinib-Loaded PLGA Microspheres. , 2017, Molecular pharmaceutics.

[24]  F. Papadimitrakopoulos,et al.  Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[25]  J. Siepmann,et al.  Does PLGA microparticle swelling control drug release? New insight based on single particle swelling studies. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[26]  G. Salzano,et al.  PLGA microspheres encapsulating siRNA anti-TNFalpha: efficient RNAi-mediated treatment of arthritic joints. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[27]  W. Friess,et al.  Application of Hansen solubility parameters for understanding and prediction of drug distribution in microspheres. , 2011, International journal of pharmaceutics.

[28]  Anders Axelsson,et al.  The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems--a review. , 2011, International journal of pharmaceutics.

[29]  Marius Bauer,et al.  Polymers in Drug Delivery—State of the Art and Future Trends , 2011 .

[30]  A. Heise,et al.  Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters. , 2010, Biomacromolecules.

[31]  E. Topp,et al.  Physical properties of PLGA films during polymer degradation , 2009 .

[32]  Diane J. Burgess,et al.  Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[33]  L. Perioli,et al.  Ketoprofen poly(lactide-co-glycolide) physical interaction , 2007, AAPS PharmSciTech.

[34]  C. Laurencin,et al.  Biodegradable polymers as biomaterials , 2007 .

[35]  Pauline E. Leary,et al.  Elevated temperature accelerated release testing of PLGA microspheres. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[36]  J. Siepmann,et al.  How porosity and size affect the drug release mechanisms from PLGA-based microparticles. , 2006, International journal of pharmaceutics.

[37]  H. Chung,et al.  Biodegradable polymeric microspheres with "open/closed" pores for sustained release of human growth hormone. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[38]  A. G. Ding,et al.  Prediction of microclimate pH in poly(lactic-co-glycolic acid) films. , 2006, Journal of the American Chemical Society.

[39]  F. Selmin,et al.  Plasticizing effect of water on poly(lactide-co-glycolide). , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[40]  Juergen Siepmann,et al.  How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment. , 2005, Biomacromolecules.

[41]  Mari Takahashi,et al.  Development of implant tablet for a week-long sustained release. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[42]  J. Siepmann,et al.  Effect of the size of biodegradable microparticles on drug release: experiment and theory. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[43]  Andreas Ehinger,et al.  In vitro and in vivo correlation of buserelin release from biodegradable implants using statistical moment analysis. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[44]  Robert Gurny,et al.  Biodegradable microparticles for sustained release of a new GnRH antagonist--part I: Screening commercial PLGA and formulation technologies. , 2003, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[45]  J. Fariña,et al.  Potential applications of PLGA film-implants in modulating in vitro drugs release. , 2002, International journal of pharmaceutics.

[46]  A. Göpferich,et al.  Why degradable polymers undergo surface erosion or bulk erosion. , 2002, Biomaterials.

[47]  J. Breitenbach Melt extrusion: from process to drug delivery technology. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[48]  M Dunne,et al.  Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. , 2000, Biomaterials.

[49]  Anderson,et al.  Biodegradation and biocompatibility of PLA and PLGA microspheres. , 1997, Advanced drug delivery reviews.

[50]  A. Göpferich,et al.  Mechanisms of polymer degradation and erosion. , 1996, Biomaterials.

[51]  R. Tarantino,et al.  A biodegradable injectable implant for delivering micro and macromolecules using poly (lactic-co-glycolic) acid (PLGA) copolymers , 1993 .

[52]  C. G. Pitt,et al.  Poly (glycolic acid-co-dl-lactic acid): diffusion or degradation controlled drug delivery? , 1992 .