H0 Tension and the Phantom Regime: A Case Study in Terms of an Infrared f(T) Gravity

We propose an f(T) teleparallel gravity theory including a torsional infrared (IR) correction. We show that the governing Friedmann’s equations of a spatially flat universe include a phantom-like effective dark energy term sourced by the torsion IR correction. As has been suggested, this phantom phase does indeed act to reconcile the tension between local and global measurements of the current Hubble value H0. The resulting cosmological model predicts an electron scattering optical depth τe ≈ 0.058 at reionization redshift zre ∼ 8.1, in agreement with observations. The predictions are, however, in contradiction with baryon acoustic oscillation (BAO) measurements, particularly the distance indicators. We argue that this is the case with any model with a phantom dark energy model that has effects significant enough at redshifts z ≲ 2 as to be currently observable, the reason being that such a scenario introduces systematic differences in terms of distance estimates in relation to the standard model; e.g., if the angular diameter distance to the recombination era is to be kept constant while H0 is increased in the context of a phantom scenario, the distances there are systematically overestimated to all objects at redshifts smaller than recombination. But no such discrepancies exist between ΛCDM predictions and current data for z ≲ 2.

[1]  Stefano Casertano,et al.  Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant , 2018, The Astrophysical Journal.

[2]  Rafael C. Nunes Structure formation in f(T) gravity and a solution for H0 tension , 2018, 1802.02281.

[3]  M. Saal,et al.  Nonmetricity formulation of general relativity and its scalar-tensor extension , 2018, Physical Review D.

[4]  Jessica R. Lu,et al.  The Optical/Near-infrared Extinction Law in Highly Reddened Regions , 2018, 1801.08574.

[5]  M. Hohmann,et al.  Covariant formulation of scalar-torsion gravity , 2018, 1801.05786.

[6]  A. Myers,et al.  The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: a tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights , 2018, Monthly Notices of the Royal Astronomical Society.

[7]  David O. Jones,et al.  New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant , 2018, 1801.01120.

[8]  B. Yanny,et al.  Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1 , 2017, Monthly Notices of the Royal Astronomical Society.

[9]  Tong-Jie Zhang,et al.  Cosmological model-independent test of $$\varLambda $$ΛCDM with two-point diagnostic by the observational Hubble parameter data , 2017, 1712.01703.

[10]  E. Saridakis,et al.  Phase portraits of general f(T) cosmology , 2017, 1710.10194.

[11]  A. Melchiorri,et al.  Vacuum phase transition solves the H 0 tension , 2017, 1710.02153.

[12]  A. Awad,et al.  Constant-roll inflation in f(T) teleparallel gravity , 2017, Journal of Cosmology and Astroparticle Physics.

[13]  Kevin J. Ludwick The Viability of Phantom Dark Energy: A Brief Review , 2017, 1708.06981.

[14]  D. Schneider,et al.  Baryon acoustic oscillations from the complete SDSS-III Ly$\alpha$-quasar cross-correlation function at $z=2.4$ , 2017, 1708.02225.

[15]  G. Nashed,et al.  Lorenz Gauge Fixing of $f(T)$ Teleparallel Cosmology , 2017, 1707.01802.

[16]  Lixin Xu,et al.  A Measurement of the Hubble Constant Using Galaxy Redshift Surveys , 2017, 1706.09149.

[17]  M. Hohmann,et al.  Dynamical systems approach and generic properties of $f(T)$ cosmology , 2017, 1706.02376.

[18]  V. Oikonomou,et al.  Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution , 2017, 1705.11098.

[19]  A. Myers,et al.  The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of baryon acoustic oscillations between redshift 0.8 and 2.2 , 2017, 1705.06373.

[20]  A. Melchiorri,et al.  Constraining dark energy dynamics in extended parameter space , 2017, 1704.00762.

[21]  G. Nashed,et al.  Generic phase portrait analysis of finite-time singularities and generalized Teleparallel gravity , 2017, 1702.05786.

[22]  R. Nichol,et al.  Dynamical dark energy in light of the latest observations , 2017, Nature Astronomy.

[23]  T. Koivisto,et al.  On the covariance of teleparallel gravity theories , 2017, 1701.06271.

[24]  E. Saridakis,et al.  New observational constraints on f(R) gravity from cosmic chronometers , 2016, 1610.07518.

[25]  Bharat Ratra,et al.  HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON THE REDSHIFT OF THE DECELERATION–ACCELERATION TRANSITION, DYNAMICAL DARK ENERGY, AND SPACE CURVATURE , 2016, 1607.03537.

[26]  W. M. Wood-Vasey,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample , 2016, 1607.03155.

[27]  Ke Wang,et al.  How the dark energy can reconcile Planck with local determination of the Hubble constant , 2016, 1606.05965.

[28]  A. Melchiorri,et al.  Reconciling Planck with the local value of H0 in extended parameter space , 2016, 1606.00634.

[29]  V. Sahni,et al.  Constraining the Cosmology of the Phantom Brane using Distance Measures , 2016, 1605.04707.

[30]  G. Nashed,et al.  Bounce inflation in $f(T)$ Cosmology: A unified inflaton-quintessence field , 2016, 1604.07604.

[31]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[32]  E. Saridakis,et al.  The covariant formulation of f(T) gravity , 2015, 1510.08432.

[33]  A. Melchiorri,et al.  Cosmological hints of modified gravity , 2015, 1509.07501.

[34]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[35]  Ashley J. Ross,et al.  The clustering of the SDSS DR7 Main Galaxy Sample I: a 4 per cent distance measure at z=0.15 , 2014, 1409.3242.

[36]  A. Shafieloo,et al.  MODEL-INDEPENDENT EVIDENCE FOR DARK ENERGY EVOLUTION FROM BARYON ACOUSTIC OSCILLATIONS , 2014, 1406.2209.

[37]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature , 2014, 1401.0358.

[38]  J. W. Maluf,et al.  The teleparallel equivalent of general relativity , 2013, 1303.3897.

[39]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[40]  J. G. Pereira,et al.  Teleparallel Gravity: An Introduction , 2012 .

[41]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[42]  S. Nojiri,et al.  Reconstruction of f(T) gravity: Rip cosmology, finite-time future singularities, and thermodynamics , 2012, 1202.4057.

[43]  Robert J. Scherrer,et al.  Pseudo-rip: Cosmological models intermediate between the cosmological constant and the little rip , 2011, 1112.2964.

[44]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[45]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[46]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[47]  Franco Fiorini,et al.  Non-trivial frames for f(T) theories of gravity and beyond , 2011, 1103.0824.

[48]  J. Barrow,et al.  Generalizations of teleparallel gravity and local Lorentz symmetry , 2010, 1012.4039.

[49]  Sergei D. Odintsov,et al.  Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.

[50]  Chung-Chi Lee,et al.  Equation of state for dark energy in $f(T)$ gravity , 2010, 1011.0508.

[51]  J. Barrow,et al.  f(T) gravity and local Lorentz invariance , 2010, 1010.1041.

[52]  E. Saridakis,et al.  Cosmological perturbations in f(T) gravity , 2010, 1008.1250.

[53]  I. Sawicki,et al.  Imperfect Dark Energy from Kinetic Gravity Braiding , 2010, 1008.0048.

[54]  E. Linder Einstein's other gravity and the acceleration of the Universe , 2010, 1005.3039.

[55]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[56]  R. Ferraro,et al.  Dark torsion as the cosmic speed-up , 2008, 0812.1205.

[57]  A. Shafieloo,et al.  Two new diagnostics of dark energy , 2008, 0807.3548.

[58]  J. Shull,et al.  Constraints on First-Light Ionizing Sources from Optical Depth of the Cosmic Microwave Background , 2008, 0806.0392.

[59]  Yi-Fu Cai,et al.  On perturbations of a quintom bounce , 2007, 0711.2187.

[60]  Yi Cai,et al.  Bouncing universe with Quintom matter , 2007, 0704.1090.

[61]  M. Peimbert,et al.  Revised Primordial Helium Abundance Based on New Atomic Data , 2007, astro-ph/0701580.

[62]  A. Starobinsky,et al.  RECONSTRUCTING DARK ENERGY , 2006, astro-ph/0610026.

[63]  S. Giddings Gravity and Strings , 2005, hep-ph/0501080.

[64]  S. Carroll,et al.  Can we be tricked into thinking that w is less than -1? , 2004, astro-ph/0408081.

[65]  J. Cepa Constraints on the cosmic equation of state: Age conflict versus phantom energy. Age-redshift relations in an accelerated universe , 2004, astro-ph/0403616.

[66]  S. Carroll,et al.  Can the dark energy equation - of - state parameter w be less than -1? , 2003, astro-ph/0301273.

[67]  R. Ellis,et al.  Parameter constraints for flat cosmologies from cosmic microwave background and 2dFGRS power spectra , 2002, astro-ph/0206256.

[68]  J. Newman,et al.  Measuring the Cosmic Equation of State with Counts of Galaxies , 1999, The Astrophysical journal.

[69]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[70]  J. Bond,et al.  Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies , 1998, astro-ph/9807103.

[71]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[72]  J. G. Pereira,et al.  Riemannian and Teleparallel Descriptions of the Scalar Field Gravitational Interaction , 1997, gr-qc/9706070.

[73]  M. Wanas,et al.  Theoretical interpretation of cosmic magnetic fields , 1995 .

[74]  N. Sugiyama,et al.  Anisotropies in the cosmic microwave background : an analytic approach , 1994, astro-ph/9407093.

[75]  J. Mccrea,et al.  Metric affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance , 1994, gr-qc/9402012.

[76]  C. A. Oxborrow,et al.  Planck 2015 results. XIV. Dark energy and modified gravity , 2015, 1502.01590.

[77]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples , 2014 .

[78]  J. W. Maluf,et al.  Hamiltonian formulation of the teleparallel description of general relativity , 1994 .

[79]  Sean M. Carroll The Cosmological Constant , 2000, Living reviews in relativity.

[80]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .