Hydrogen bonding and covalent effects in binding of cisplatin to purine bases: ab initio and atoms in molecules studies.

Ab initio and density functional calculations are employed to investigate the role of hydrogen bonding in the binding of cisplatin to the purine bases guanine and adenine. Through the use of the theory of atoms in molecules (AIM), it is shown that hydrogen bonds are ubiquitous in such systems, with N-H...N and N-H...Cl interactions present in addition to the expected N-H...O. This in turn means that the known stability of cisplatin-guanine complexes cannot be ascribed solely to hydrogen bonding and allows decomposition of total binding energy into contributions from covalent and hydrogen bonds. To do so, a new method for predicting hydrogen bond energies from bond critical point properties is proposed, employing partial least-squares analysis to remove the family dependence of simple models. Still more hydrogen bond motifs are found in bifunctional complexes of the general type purine-[Pt(NH(3))(2)](2+)-purine, including purine...purine contacts, though again the energetics of these are insufficient to explain the observed trends in stability. Finally, the effect of platination on the pairing of guanine with cytosine is studied in a similar manner, revealing large redistributions of hydrogen bonding but surprisingly small overall changes in pairing energy.