Investigation Into Cost-Effective Propulsion System Options for Small Satellites

The paper summarizes research into cost-effective propulsion system options for small satellites. Research into the primary cost drivers for propulsion systems is discussed and a process for resolving them is advanced. From this analysis, a new paradigm for understanding the total cost of propulsion systems is defined that encompasses nine dimensions – mass, volume, time, power, system price, integration, logistics, safety and technical risk. This paradigm is used to characterize all near-term propulsion technology options. From this effort, hybrid rockets emerges as a promising but underdeveloped technology with great potential for cost-effective application. A dedicated research program was completed to characterize this potential. This research demonstrated that hybrid rockets offer a safe, reliable upper stage option that is a versatile, cost-effective alternative to solid rocket motors. Finally, an innovative technique was derived to parametrically combine the diverse cost dimensions into a useful, quantifiable figure of merit for mission and research planning. Overall, it is shown that the most cost-effective solution is found by weighing all options along the nine dimensions of the cost paradigm within the context of a specific mission.