Critical Fluences And Modeling Of CO{sub 2} Laser Ablation Of Polyoxymethylene From Vaporization To The Plasma Regime

A CO2 laser was operated at pulse energies up to 10 J to ablate polyoxymethylene targets in air and vacuum conditions. Critical effects predicted by ablation models are discussed in relation to the experimental data, including specifically the threshold fluences for vaporization and critical plasma formation, and the fluence at which the optimal momentum coupling coefficient is found. Finally, we discuss a new approach for modeling polymers at long wavelengths, including a connection formula that links the vaporization and plasma regimes for laser ablation propulsion.