Iterative decoding schemes for source and joint source-channel coding of correlated sources

We propose the use of linear codes with low density generator matrix for channel coding, and joint source-channel coding of correlated sources. The use of iterative decoding techniques, i.e. message passing, over the corresponding graph achieves a performance close to the theoretical limits. As an advantage with respect to turbo and standard low-density parity check codes, the complexity of the decoding and encoding procedures is very low.

[1]  Ying Zhao,et al.  Data Compression of Unknown Single and Correlated Binary Sources Using Punctured Turbo Codes , 2002 .

[2]  Zixiang Xiong,et al.  Joint source-channel coding of binary sources with side information at the decoder using IRA codes , 2002, 2002 IEEE Workshop on Multimedia Signal Processing..

[3]  Wei Zhong,et al.  LDPC codes for compression of multi-terminal sources with hidden Markov correlation , 2003, IEEE Communications Letters.

[4]  Patrick Mitran,et al.  Turbo source coding: a noise-robust approach to data compression , 2002, Proceedings DCC 2002. Data Compression Conference.

[5]  Javier Garcia-Frías,et al.  Joint source-channel decoding of correlated sources over noisy channels , 2001, Proceedings DCC 2001. Data Compression Conference.

[6]  Ying Zhao,et al.  Compression of correlated binary sources using turbo codes , 2001, IEEE Communications Letters.

[7]  Shlomo Shamai,et al.  Systematic Lossy Source/Channel Coding , 1998, IEEE Trans. Inf. Theory.

[8]  Kannan Ramchandran,et al.  Distributed source coding using syndromes (DISCUSS): design and construction , 1999 .

[9]  R. A. McDonald,et al.  Noiseless Coding of Correlated Information Sources , 1973 .

[10]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[11]  Fady Alajaji,et al.  Design of Turbo Codes for Non-Equiprobable Memoryless Sources , 2001 .

[12]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[13]  Sammy Chan,et al.  Iterative decoding of multi-dimensional concatenated single parity check codes , 1998, ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220).

[14]  Jaekyun Moon,et al.  A low-density generator matrix interpretation of parallel concatenated single bit parity codes , 2001 .

[15]  Javier Garcia-Frías,et al.  Combining hidden Markov source models and parallel concatenated codes , 1997, IEEE Communications Letters.

[16]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[17]  Aaron D. Wyner Recent Results in the Shannon Theory Invited Paper , 1974 .

[18]  K. Ramchandran,et al.  Distributed source coding using syndromes (DISCUS): design and construction , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[19]  Javier Garcia-Frías,et al.  Joint turbo decoding and estimation of hidden Markov sources , 2001, IEEE J. Sel. Areas Commun..

[20]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[21]  Bernd Girod,et al.  Compression with side information using turbo codes , 2002, Proceedings DCC 2002. Data Compression Conference.

[22]  Fady Alajaji,et al.  Turbo codes for nonuniform memoryless sources over noisy channels , 2002, IEEE Communications Letters.

[23]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[24]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[25]  Zixiang Xiong,et al.  Compression of binary sources with side information at the decoder using LDPC codes , 2002, IEEE Communications Letters.

[26]  Patrick Mitran,et al.  Coding for the Slepian-Wolf problem with turbo codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).