Hydrogen interaction with carbon nanostructures - current situation and future prospects

Recent research on hydrogen in various carbon nanostructures is reviewed. Based on these research activities, we focus on a defect mediated hydrogen sorption in carbon nanostructures. Mechanically prepared nanostructured graphite has been reported to exhibit a specific interaction with hydrogen, probably due to the partial formation of the defect mediated hydrogen sorption. Current situations and future prospects of carbon nanostructures providing hydrogen storage functions are critically, but still positively, described in this paper.

[1]  Peter C. Eklund,et al.  Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes , 2000 .

[2]  K. D. de Jong,et al.  Hydrogen storage using physisorption – materials demands , 2001 .

[3]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[4]  Michele Parrinello,et al.  Review of theoretical calculations of hydrogen storage in carbon-based materials , 2001 .

[5]  S. Orimo,et al.  Hydrogen in mechanically prepared nanostructured h-BN: a critical comparison with that in nanostructured graphite , 2002 .

[6]  R. Cracknell Molecular simulation of hydrogen adsorption in graphitic nanofibres , 2001 .

[7]  J. Garche,et al.  Hydrogen adsorption on carbon materials , 1999 .

[8]  Michael J. Heben,et al.  Hydrogen storage using carbon adsorbents: past, present and future , 2001 .

[9]  Andreas Züttel,et al.  Hydrogen in Nanostructured, Carbon-Related, and Metallic Materials , 2002 .

[10]  A. Züttel,et al.  Hydrogen Interaction with Carbon Nanostructures , 2001 .

[11]  Kenneth A. Smith,et al.  Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes , 1999 .

[12]  K. Tada,et al.  Ab initio study of hydrogen adsorption to single-walled carbon nanotubes , 2001 .

[13]  T. Fukunaga,et al.  Location of deuterium atoms absorbed in nanocrystalline graphite prepared by mechanical alloying , 2001 .

[14]  T. Fukunaga,et al.  Hydrogen desorption property of mechanically prepared nanostructured graphite , 2001 .

[15]  T. Enoki,et al.  Hydrogen-alkali-metal-graphite ternary intercalation compounds , 1990 .

[16]  Andreas Züttel,et al.  Hydrogen sorption by carbon nanotubes and other carbon nanostructures , 2002 .

[17]  F. Béguin,et al.  Enhancement of Reversible Hydrogen Capacity into Activated Carbon through Water Electrolysis , 2001 .

[18]  A. Züttel,et al.  Hydrogen in the mechanically prepared nanostructured graphite , 1999 .

[19]  Catherine Zandonella,et al.  Is it all just a pipe dream? , 2001, Nature.

[20]  V. Sidis,et al.  DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface , 1999 .

[21]  M. Monthioux,et al.  Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation , 2001 .

[22]  M. Celino,et al.  Atomic hydrogen adsorption on a Stone Wales defect in graphite , 2002 .

[23]  S. Gottesfeld,et al.  IRREVERSIBLE HYDROGENATION OF SOLID C60 WITH AND WITHOUT CATALYTIC METALS , 1999 .

[24]  Robert C. Bowman,et al.  Hydrogen desorption and adsorption measurements on graphite nanofibers , 1998 .

[25]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[26]  M. W. Cole,et al.  Hydrogen Adsorption in Nanotubes , 1998 .

[27]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[28]  Jörg Fink,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[29]  Young Hee Lee,et al.  Hydrogen storage in single-walled carbon nanotubes , 2000 .

[30]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[31]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[32]  T. Fukunaga,et al.  Nanostructured graphite-hydrogen system prepared by mechanical milling under hydrogen and argon atmospheres , 2000 .