Omics Meets Biology: Application to the Design and Preclinical Assessment of Antivenoms

Snakebite envenoming represents a neglected tropical disease that has a heavy public health impact worldwide, mostly affecting poor people involved in agricultural activities in Africa, Asia, Latin America and Oceania. A key issue that complicates the treatment of snakebite envenomings is the poor availability of the only validated treatment for this disease, antivenoms. Antivenoms can be an efficacious treatment for snakebite envenoming, provided they are safe, effective, affordable, accessible and administered appropriately. The shortage of antivenoms in various regions, particularly in Sub-Saharan Africa and some parts of Asia, can be significantly alleviated by optimizing the use of current antivenoms and by the generation of novel polyspecific antivenoms having a wide spectrum of efficacy. Complementing preclinical testing of antivenom efficacy using in vivo and in vitro functional neutralization assays, developments in venomics and antivenomics are likely to revolutionize the design and preclinical assessment of antivenoms by being able to test new antivenom preparations and to predict their paraspecific neutralization to the level of species-specific toxins.

[1]  M. Vinardell,et al.  Absorption of 3-oxy-methyl-D-glucose by chicken cecum and jejunum in vivo. , 1986, Comparative biochemistry and physiology. A, Comparative physiology.

[2]  A. Kasturiratne,et al.  The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths , 2008, PLoS medicine.

[3]  J. Calvete Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation , 2014, Expert review of proteomics.

[4]  J. Calvete,et al.  Snake venomics and antivenomics of the arboreal neotropical pitvipers Bothriechis lateralis and Bothriechis schlegelii. , 2008, Journal of proteome research.

[5]  J. Gutiérrez,et al.  Neutralization of four Peruvian Bothrops sp. snake venoms by polyvalent antivenoms produced in Perú and Costa Rica: preclinical assessment. , 2005, Acta tropica.

[6]  J. Calvete,et al.  Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. , 2010, Journal of proteome research.

[7]  C. Betzel,et al.  Proteome analysis of snake venom toxins: pharmacological insights , 2008, Expert review of proteomics.

[8]  Keith J Boesen,et al.  Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona. , 2012, Journal of proteomics.

[9]  J. Gené,et al.  Comparative study of the edema-forming activity of Costa Rican snake venoms and its neutralization by a polyvalent antivenom. , 1986, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[10]  D. Rokyta,et al.  Linking the transcriptome and proteome to characterize the venom of the eastern diamondback rattlesnake (Crotalus adamanteus). , 2014, Journal of proteomics.

[11]  J. Calvete Proteomic tools against the neglected pathology of snake bite envenoming , 2011, Expert review of proteomics.

[12]  J. Calvete,et al.  Proteomic analysis of ontogenetic and diet-related changes in venom composition of juvenile and adult Dusky Pigmy rattlesnakes (Sistrurus miliarius barbouri). , 2011, Journal of proteomics.

[13]  J. Calvete,et al.  Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. , 2011, Journal of proteome research.

[14]  David J. Williams,et al.  The Global Snake Bite Initiative: an antidote for snake bite , 2010, The Lancet.

[15]  J. Calvete,et al.  Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus , 2013, BMC Genomics.

[16]  J. Fox,et al.  Bothrops jararaca venom proteome rearrangement upon neonate to adult transition , 2011, Proteomics.

[17]  David J. Williams,et al.  The Need for Full Integration of Snakebite Envenoming within a Global Strategy to Combat the Neglected Tropical Diseases: The Way Forward , 2013, PLoS neglected tropical diseases.

[18]  J. Calvete,et al.  Second generation snake antivenomics: comparing immunoaffinity and immunodepletion protocols. , 2012, Toxicon : official journal of the International Society on Toxinology.

[19]  J. Calvete,et al.  Snake venomics of Bothriechis nigroviridis reveals extreme variability among palm pitviper venoms: different evolutionary solutions for the same trophic purpose. , 2010, Journal of proteome research.

[20]  David J. Williams,et al.  Snakebite envenoming from a global perspective: Towards an integrated approach. , 2010, Toxicon : official journal of the International Society on Toxinology.

[21]  S. Sutherland Progress in the characterization of venoms and standardization of antivenoms. , 1981, WHO offset publication.

[22]  D. Broadley,et al.  A new species of spitting cobra (Naja) from north-eastern Africa (Serpentes: Elapidae) , 2003 .

[23]  J. Gené,et al.  Neutralization of hyaluronidase and indirect hemolytic activities of Costa Rican snake venoms by a polyvalent antivenom. , 1985, Toxicon : official journal of the International Society on Toxinology.

[24]  D. Lalloo,et al.  Snake Envenoming: A Disease of Poverty , 2009, PLoS neglected tropical diseases.

[25]  B. Hughes African snake faunas , 1983 .

[26]  D. Rokyta,et al.  The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms , 2013, BMC Genomics.

[27]  C. Bon A propos de l'article d'Albert Calmette contribution à l'étude du venin des serpents. Inmunisation des animaux et traitement de l'envenimation paru dans les Annales de l'Institut Pasteur en mai 1894 , 1994 .

[28]  J. Chippaux Recommandations pour la production, le contrôle et l'enregistrement des immunoglobulines antivenimeuses. , 2010 .

[29]  J. Gutiérrez,et al.  Pulmonary hemorrhage induced by jararhagin, a metalloproteinase from Bothrops jararaca snake venom. , 2003, Toxicology and applied pharmacology.

[30]  David J. Williams,et al.  A multicomponent strategy to improve the availability of antivenom for treating snakebite envenoming. , 2014, Bulletin of the World Health Organization.

[31]  J. Gutiérrez Improving antivenom availability and accessibility: science, technology, and beyond. , 2012, Toxicon : official journal of the International Society on Toxinology.

[32]  J. Calvete,et al.  Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda. , 2012, Journal of proteomics.

[33]  J. Gutiérrez,et al.  Neutrophils do not contribute to local tissue damage, but play a key role in skeletal muscle regeneration, in mice injected with Bothrops asper snake venom , 2003, Muscle & nerve.

[34]  David G Lalloo,et al.  Snake Antivenoms , 2003, Journal of toxicology. Clinical toxicology.

[35]  Michael G. Sovic,et al.  Phylogeny-Based Comparative Analysis of Venom Proteome Variation in a Clade of Rattlesnakes (Sistrurus sp.) , 2013, PloS one.

[36]  James E. Chiucchi,et al.  Deconstructing a Complex Molecular Phenotype: Population-Level Variation in Individual Venom Proteins in Eastern Massasauga Rattlesnakes (Sistrurus c. catenatus) , 2011, Journal of Molecular Evolution.

[37]  J. Calvete,et al.  Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. , 2008, Journal of proteome research.

[38]  J. Chippaux,et al.  Snake venom variability: methods of study, results and interpretation. , 1991, Toxicon : official journal of the International Society on Toxinology.

[39]  H. Gibbs,et al.  Niche divergence and lineage diversification among closely related Sistrurus rattlesnakes , 2012, Journal of evolutionary biology.

[40]  Bill Bynum,et al.  Lancet , 2015, The Lancet.

[41]  H. Scheib,et al.  Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications. , 2014, Journal of proteomics.

[42]  J. Calvete,et al.  Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus. , 2009, Journal of proteomics.

[43]  J. Calvete,et al.  Snake venomics. Strategy and applications. , 2007, Journal of mass spectrometry : JMS.

[44]  M. L. Santoro,et al.  Comparative analysis of newborn and adult Bothrops jararaca snake venoms. , 2010, Toxicon : official journal of the International Society on Toxinology.

[45]  S. Wagstaff,et al.  Research strategies to improve snakebite treatment: challenges and progress. , 2011, Journal of proteomics.

[46]  J. Gené,et al.  Neutralization of proteolytic and hemorrhagic activities of Costa Rican snake venoms by a polyvalent antivenom. , 1985, Toxicon : official journal of the International Society on Toxinology.

[47]  J. Gutiérrez,et al.  Pan-African polyspecific antivenom produced by caprylic acid purification of horse IgG: an alternative to the antivenom crisis in Africa. , 2005, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[48]  H. Ikezawa,et al.  Studies on the quantitative method for determination of hemorrhagic activity of Habu snake venom. , 1960, Japanese journal of medical science & biology.

[49]  J. Calvete,et al.  Venomics of New World pit vipers: genus-wide comparisons of venom proteomes across Agkistrodon. , 2014, Journal of proteomics.

[50]  David J. Williams,et al.  Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. , 2011, Journal of proteomics.

[51]  Yan‐Fu Qu,et al.  Proteomic and biochemical analyses of short-tailed pit viper (Gloydius brevicaudus) venom: age-related variation and composition-activity correlation. , 2014, Journal of proteomics.

[52]  David J. Williams,et al.  Combined venom gland cDNA sequencing and venomics of the New Guinea small-eyed snake, Micropechis ikaheka. , 2014, Journal of proteomics.

[53]  J. Calvete,et al.  Preclinical assessment of a polyspecific antivenom against the venoms of Cerrophidion sasai, Porthidium nasutum and Porthidium ophryomegas: Insights from combined antivenomics and neutralization assays. , 2013, Toxicon : official journal of the International Society on Toxinology.

[54]  A. Lemmon,et al.  The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus) , 2012, BMC Genomics.

[55]  J. Gutiérrez,et al.  Antivenoms for the treatment of snakebite envenomings: the road ahead. , 2011, Biologicals : journal of the International Association of Biological Standardization.

[56]  J. Calvete,et al.  Immunological profile of antivenoms: preclinical analysis of the efficacy of a polyspecific antivenom through antivenomics and neutralization assays. , 2014, Journal of proteomics.

[57]  J. Gené,et al.  Standardization of assays for testing the neutralizing ability of antivenoms. , 1990, Toxicon : official journal of the International Society on Toxinology.

[58]  A. Harvey,et al.  The use of the chick biventer cervicis preparation to assess the protective activity of six international reference antivenoms on the neuromuscular effects of snake venoms in vitro. , 1994, Toxicon : official journal of the International Society on Toxinology.

[59]  D. Warrell,et al.  Report of a WHO workshop on the standardization and control of antivenoms. , 2003, Toxicon : official journal of the International Society on Toxinology.

[60]  J. Calvete,et al.  Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management. , 2010, Journal of proteomics.

[61]  J. Porath,et al.  Purification of a neurotoxin from the venom of Naja nigricollis. , 1966, Biochimica et biophysica acta.

[62]  David J. Williams,et al.  Preclinical efficacy of Australian antivenoms against the venom of the small-eyed snake, Micropechis ikaheka, from Papua New Guinea: an antivenomics and neutralization study. , 2014, Journal of proteomics.

[63]  R. Theakston,et al.  Development of simple standard assay procedures for the characterization of snake venom. , 1983, Bulletin of the World Health Organization.

[64]  David J. Williams,et al.  New approaches & technologies of venomics to meet the challenge of human envenoming by snakebites in India , 2013, The Indian journal of medical research.

[65]  J. Calvete,et al.  Snake venomics of Lachesis muta rhombeata and genus-wide antivenomics assessment of the paraspecific immunoreactivity of two antivenoms evidence the high compositional and immunological conservation across Lachesis. , 2013, Journal of proteomics.

[66]  J. Fox,et al.  Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures , 2008, Proteomics.

[67]  J. Gutiérrez,et al.  Thrombocytopenia and platelet hypoaggregation induced by Bothrops asper snake venom , 2005, Thrombosis and Haemostasis.

[68]  J. Calvete,et al.  Venomous snakes of Costa Rica: biological and medical implications of their venom proteomic profiles analyzed through the strategy of snake venomics. , 2014, Journal of proteomics.

[69]  J. Calvete,et al.  Snake population venomics and antivenomics of Bothrops atrox: Paedomorphism along its transamazonian dispersal and implications of geographic venom variability on snakebite management. , 2011, Journal of proteomics.

[70]  J. Calvete,et al.  Snake venomics of the Lesser Antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: correlation with toxicological activities and immunoreactivity of a heterologous antivenom. , 2008, Journal of proteome research.

[71]  J. M. Gutiérrez,et al.  Mionecrosis, hemorragia y edema inducidos por el veneno de Bothrops asper en ratón blanco , 1980 .

[72]  J. Gené,et al.  Comparative study on coagulant, defibrinating, fibrinolytic and fibrinogenolytic activities of Costa Rican crotaline snake venoms and their neutralization by a polyvalent antivenom. , 1989, Toxicon : official journal of the International Society on Toxinology.

[73]  S. Mackessy Venom Composition in Rattlesnakes: Trends and Biological Significance , 2008 .

[74]  J. Calvete Snake venomics: from the inventory of toxins to biology. , 2013, Toxicon : official journal of the International Society on Toxinology.

[75]  David J. Williams,et al.  Preclinical Evaluation of Caprylic Acid-Fractionated IgG Antivenom for the Treatment of Taipan (Oxyuranus scutellatus) Envenoming in Papua New Guinea , 2011, PLoS neglected tropical diseases.

[76]  J. Calvete,et al.  Assessing the preclinical efficacy of antivenoms: from the lethality neutralization assay to antivenomics. , 2013, Toxicon : official journal of the International Society on Toxinology.

[77]  J. Calvete,et al.  Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms , 2014, Proceedings of the National Academy of Sciences.

[78]  B. J. Hawgood Doctor Albert Calmette 1863-1933: founder of antivenomous serotherapy and of antituberculous BCG vaccination. , 1999, Toxicon : official journal of the International Society on Toxinology.