Massively Parallel Implementation of the Mesoscale Compressible Community Model

Abstract Computational fluid dynamics and meteorology in particular are among the major consumers of high performance computer technology. The next generation of atmospheric models will be capable of representing fluid flow phenomena at very small scales in the atmosphere. The mesoscale compressible community (MC2) model represents one of the first successful applications of a semi-implicit, semi-Lagrangian scheme to integrate the compressible governing equations for atmospheric flow in a limited area domain. A distributed-memory SPMD implementation of the MC2 model is described and the convergence rates of various parallel preconditioners for a Krylov type GMRES elliptic solver are reported. Parallel performance of the model on the Cray T3E MPP and NEC SX-4/32 SMP is also presented.

[1]  André Robert,et al.  A stable numerical integration scheme for the primitive meteorological equations , 1981 .

[2]  Motohki Ikawa,et al.  Comparison of Some Schemes for Nonhydrostatic Models with Orography , 1988 .

[3]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[4]  T. Clark A small-scale dynamic model using a terrain-following coordinate transformation , 1977 .

[5]  Andrei V. Malevsky,et al.  Spline-Characteristic Method for Simulation of Convective Turbulence , 1996 .

[6]  A. Simmons,et al.  Implementation of the Semi-Lagrangian Method in a High-Resolution Version of the ECMWF Forecast Model , 1995 .

[7]  Stephen J. Thomas,et al.  The Cost-Effectiveness of Semi-Lagrangian Advection , 1996 .

[8]  Piotr K. Smolarkiewicz,et al.  Preconditioned Conjugate-Residual Solvers for Helmholtz Equations in Nonhydrostatic Models , 1997 .

[9]  Ian T. Foster,et al.  Design and Performance of a Scalable Parallel Community Climate Model , 1995, Parallel Comput..

[10]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[11]  Fanyou Kong,et al.  An explicit approach to microphysics in MC2 , 1997 .

[12]  Roland W. Freund,et al.  QMRPACK: a package of QMR algorithms , 1996, TOMS.

[13]  J. Ortega,et al.  SOR as a preconditioner , 1995 .

[14]  Petter E. Bjørstad,et al.  Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing, PPSC 1995, San Francisco, California, USA, February 15-17, 1995 , 1995, PPSC.

[15]  Richard Asselin,et al.  Frequency Filter for Time Integrations , 1972 .

[16]  James J. Hack,et al.  Computational Design of the NCAR Community Climate Model , 1995, Parallel Comput..

[17]  Harold Ritchie,et al.  Advantages of Spatial Averaging in Semi-implicit Semi-Lagrangian Schemes , 1992 .

[18]  M. Desgagné,et al.  The Canadian MC2: A Semi-Lagrangian, Semi-Implicit Wideband Atmospheric Model Suited for Finescale Process Studies and Simulation , 1997 .

[19]  M. Tapp,et al.  A non‐hydrostatic mesoscale model , 1976 .

[20]  Len G. Margolin,et al.  On Forward-in-Time Differencing for Fluids: Stopping Criteria for Iterative Solutions of Anelastic Pressure Equations , 1997 .

[21]  B. Golding An efficient non-hydrostatic forecast model , 1992 .

[22]  Hartmut Höller,et al.  A Mesoscale Model for the Simulation of Turbulence, Clouds and Flow over Mountains: Formulation and Validation Examples , 1987 .

[23]  Monique Tanguay,et al.  A Semi-implicit Send-Lagrangian Fully Compressible Regional Forecast Model , 1990 .

[24]  Ian T. Foster,et al.  Parallel Algorithms for Semi-Lagrangian Transport in Global Atmospheric Circulation Models , 1995, PPSC.

[25]  M. Cullen A test of a semi‐implicit integration technique for a fully compressible non‐hydrostatic model , 1990 .

[26]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[27]  D. Durran,et al.  A Compressible Model for the Simulation of Moist Mountain Waves , 1983 .

[28]  J. Thomas,et al.  A NEW DYNAMICS KERNEL FOR THE MC2 MODEL II: FLEXIBLE GMRES ELLIPTIC SOLVER , 1997 .

[29]  Richard C. J. Somerville,et al.  On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .

[30]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[31]  John Marshall,et al.  Application of a parallel Navier-Stokes model to ocean circulation , 1996 .

[32]  Len G. Margolin,et al.  On Forward-in-Time Differencing for Fluids: an Eulerian/Semi-Lagrangian Non-Hydrostatic Model for Stratified Flows , 1997 .

[33]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[34]  Youcef Saad,et al.  Highly Parallel Preconditioners for General Sparse Matrices , 1994 .