Lithium Iron Phosphate - Assessment of Calendar Life and Change of Battery Parameters

This paper represents the calendar life cycle test results of a 7Ah lithium iron phosphate battery cell. In the proposed article and extended analysis has been carried out for the main aging parameters during calendar life and the associated impact of the used battery model. From the analysis, it has been showed that the impact of high temperatures and state of charge is harmful for the lifetime of the battery. Therefore, there is a need for having a dedicated control strategy for keeping the battery in the most appropriate operating condition. The FreedomCar battery model parameters have been analyzed during calendar life.

[1]  Marshall Miller,et al.  Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles , 2009 .

[2]  Dominique Guyomard,et al.  Aging of the LiFePO4 positive electrode interface in electrolyte , 2010 .

[3]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[4]  M. Broussely,et al.  Main aging mechanisms in Li ion batteries , 2005 .

[5]  Ralph E. White,et al.  Analysis of capacity fade in a lithium ion battery , 2005 .

[6]  N. Omar,et al.  Lithium iron phosphate based battery: Assessment of the aging parameters and development of cycle life model , 2014 .

[7]  N. Omar,et al.  Comparison of commercial battery cells in relation to material properties , 2013 .

[8]  Ralph E. White,et al.  Calendar life study of Li-ion pouch cells: Part 2: Simulation , 2008 .

[9]  M. Verbrugge,et al.  Aging Mechanisms of LiFePO4 Batteries Deduced by Electrochemical and Structural Analyses , 2010 .

[10]  K. T. Chau,et al.  An overview of energy sources for electric vehicles , 1999 .

[11]  Jean-Michel Vinassa,et al.  Remaining useful life prediction of lithium batteries in calendar ageing for automotive applications , 2012, Microelectron. Reliab..

[12]  Philippe Azaïs Recherche des causes du vieillissement de supercondensateurs à électrolyte organique à base de carbones activés , 2003 .

[13]  Ralph E. White,et al.  Calendar life study of Li-ion pouch cells , 2007 .

[14]  Joeri Van Mierlo,et al.  Optimization of an advanced battery model parameter minimization tool and development of a novel electrical model for lithium-ion batteries , 2014 .

[15]  Amrane Oukaour,et al.  Calendar and cycling ageing of activated carbon supercapacitor for automotive application , 2012, Microelectron. Reliab..

[16]  J Van Mierlo,et al.  Driving style and traffic measures-influence on vehicle emissions and fuel consumption , 2004 .

[17]  Joeri Van Mierlo,et al.  How to Define Clean Vehicles? Environmental Impact Rating of Vehicles , 2004 .

[18]  N. Omar,et al.  Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics , 2012 .

[19]  Dirk Uwe Sauer,et al.  Cycle and calendar life study of a graphite|LiNi1/3Mn1/3Co1/3O2 Li-ion high energy system. Part A: Full cell characterization , 2013 .

[20]  C. Delacourt,et al.  Calendar aging of a graphite/LiFePO4 cell , 2012 .

[21]  Joeri Van Mierlo,et al.  Standardization Work for BEV and HEV Applications: Critical Appraisal of Recent Traction Battery Documents , 2012 .

[22]  J. Van Mierlo,et al.  Fuel Cell or Battery: Electric Cars are the Future , 2007 .

[23]  Joeri Van Mierlo,et al.  Influence of functional unit on the life cycle assessment of traction batteries , 2007 .

[24]  K. Amine Factors responsible for impedance rise in high power lithium ion batteries , 2002 .

[25]  Chester G. Motloch,et al.  Power fade and capacity fade resulting from cycle-life testing of Advanced Technology Development Program lithium-ion batteries , 2003 .

[26]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .