DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks

We present DeblurGAN, an end-to-end learned method for motion deblurring. The learning is based on a conditional GAN and the content loss. DeblurGAN achieves state-of-the art performance both in the structural similarity measure and visual appearance. The quality of the deblurring model is also evaluated in a novel way on a real-world problem - object detection on (de-)blurred images. The method is 5 times faster than the closest competitor - Deep-Deblur [25]. We also introduce a novel method for generating synthetic motion blurred images from sharp ones, allowing realistic dataset augmentation. The model, code and the dataset are available at https://github.com/KupynOrest/DeblurGAN

[1]  Ian D. Reid,et al.  From Motion Blur to Motion Flow: A Deep Learning Solution for Removing Heterogeneous Motion Blur , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Chuan Li,et al.  Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks , 2016, ECCV.

[3]  C. Villani Optimal Transport: Old and New , 2008 .

[4]  Aggelos K. Katsaggelos,et al.  Bayesian Blind Deconvolution with General Sparse Image Priors , 2012, ECCV.

[5]  Tianqi Chen,et al.  Empirical Evaluation of Rectified Activations in Convolutional Network , 2015, ArXiv.

[6]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Shubham Pachori,et al.  Deep Generative Filter for Motion Deblurring , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[8]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[9]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[10]  Ankit Gupta,et al.  Single Image Deblurring Using Motion Density Functions , 2010, ECCV.

[11]  Minh N. Do,et al.  Semantic Image Inpainting with Perceptual and Contextual Losses , 2016, ArXiv.

[12]  Paramanand Chandramouli,et al.  Motion Deblurring in the Wild , 2017, GCPR.

[13]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[14]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[15]  Daniele Perrone,et al.  Total Variation Blind Deconvolution: The Devil Is in the Details , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Andrea Vedaldi,et al.  Instance Normalization: The Missing Ingredient for Fast Stylization , 2016, ArXiv.

[17]  Jizheng Xu,et al.  An All-in-One Network for Dehazing and Beyond , 2017, ArXiv.

[18]  Dumitru Erhan,et al.  Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Jean Ponce,et al.  Non-uniform Deblurring for Shaken Images , 2012, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Tae Hyun Kim,et al.  Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[22]  Sundaresh Ram,et al.  Removing Camera Shake from a Single Photograph , 2009 .

[23]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[24]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[25]  Yoshua Bengio,et al.  Generative Adversarial Networks , 2014, ArXiv.

[26]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Raymond Y. K. Lau,et al.  Least Squares Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[28]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Bernhard Schölkopf,et al.  Recording and Playback of Camera Shake: Benchmarking Blind Deconvolution with a Real-World Database , 2012, ECCV.

[30]  Ce Liu,et al.  Deep Convolutional Neural Network for Image Deconvolution , 2014, NIPS.

[31]  Giacomo Boracchi,et al.  Modeling the Performance of Image Restoration From Motion Blur , 2012, IEEE Transactions on Image Processing.

[32]  Ayan Chakrabarti,et al.  A Neural Approach to Blind Motion Deblurring , 2016, ECCV.

[33]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[34]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[36]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[37]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Bernhard Schölkopf,et al.  Fast removal of non-uniform camera shake , 2011, 2011 International Conference on Computer Vision.

[39]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[40]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[41]  Bernhard Schölkopf,et al.  EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[42]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[43]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[44]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[45]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Jean Ponce,et al.  Learning a convolutional neural network for non-uniform motion blur removal , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.